Glucose-dependent, cAMP-mediated ATP efflux from Free

Abstract

Extracellular ATP plays an important role in the physiology of multicellular organisms; however, it is unknown whether unicellular organisms such as yeast also release ATP extracellularly. Experiments are described here which show that releases ATP to the extracellular fluid. This efflux required glucose and the rate was increased dramatically by the proton ionophores nigericin, monensin, carbonyl cyanide -chlorophenylhydrazone and carbonyl cyanide -(trifluoromethoxy)-phenylhydrazone; ATP efflux was also increased by the plasma membrane proton pump inhibitor diethylstilbestrol. The increase in the concentration of extracellular ATP was not due to cell lysis or general disruption of plasma membrane integrity as measured by colony-forming and methylene-blue-staining assays. ATP efflux was strictly correlated with a rise in intracellular cAMP; therefore, the cAMP pathway is likely to be involved in triggering ATP efflux. These results demonstrate that yeast cells release ATP in a regulated manner.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-6-1901
1997-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/6/mic-143-6-1901.html?itemId=/content/journal/micro/10.1099/00221287-143-6-1901&mimeType=html&fmt=ahah

References

  1. Abraham E. H., Prat A. G., Gerweck L., Seneveratne T., Arceci R. J., Kramer R., Guidotti G., Cantiello H. F. 1993; The multidrug resistance (mdrl) gene product functions as an ATP channel.. Proc Natl Acad Sci USA 90:312–316
    [Google Scholar]
  2. Anderson J. M., Roth R. 1976; Adenosine utilization in cordycepin-sensitive mutants of Saccharomyces cerevisiae.. J Bactenol 128:689–691
    [Google Scholar]
  3. Arguelles J. C., Mbonyi K., Van Aelst L., Vanhalewyn M., Jans A. W. H., Thevelein J. M. 1990; Absence of glucose-induced cyclic AMP signaling in the Saccharomyces cerevisiae mutants cat1 and cat3 which are deficient in derepression of glucose-repressible proteins.. Arch Microbiol 154:199–205
    [Google Scholar]
  4. Balzi E., Wang M., Leterme S., Dyck L. V., Goffeau A. 1994; PDR5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator PDR1.. J Biol Chem 269:2206–2214
    [Google Scholar]
  5. Bissinger P. H., Kuchler K. 1994; Molecular cloning and expression of the Saccharomyces cerevisiae STS1 gene product.. J Biol Chem 269:4180–4186
    [Google Scholar]
  6. Blight M. A., Holland I. B. 1990; Structure and function of haemolysin B, P-glycoprotein and other members of a novel family of membrane translocators.. Mol Microbiol 4:873–880
    [Google Scholar]
  7. Boyum R., Guidotti G. 1997; Effect of ATP binding cassette/multidrug resistance proteins on ATP efflux of Saccharomyces cerevisiae.. Biochem Biophys Res Commun 230:22–26
    [Google Scholar]
  8. Brunton L. L., Heasley L. E. 1988; cAMP export and its regulation by prostaglandin Al.. Methods Enzymol 159:83–92
    [Google Scholar]
  9. Chen C.-C., Akopian A. N., Sivilotti L., Colquhoun D., Burnstock G., Ward J. N. 1995; A P2X purinoceptor expressed by a subset of sensory neurons.. Nature 377:428–431
    [Google Scholar]
  10. Dean M., Allikmets R., Gerrard B., Stewart C., Kistler A., Shafer B., Michaelis S., Strathern J. 1994; Mapping and sequencing of two yeast genes belonging to the ATP-binding cassette superfamily.. Yeast 10:377–383
    [Google Scholar]
  11. Deeley M. C. 1992; Adenine deaminase and adenine utilization in Saccharomyces cerevisiae.. J Bacteriol 174:3102–3110
    [Google Scholar]
  12. Doige C. A., Ames G. F. L. 1993; ATP-dependent transport systems in bacteria and humans: relevance to cystic fibrosis and multidrug resistance.. Annu Rev Microbiol 47:291–319
    [Google Scholar]
  13. Dubyak G. R., El-Moatassim C. 1993; Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides.. Am J Physiol 265:C577–C606
    [Google Scholar]
  14. Firtel R. A., van Haastert P. J. M., Kimmel A. R., Devreotes P. N. 1989; G protein linked signal transduction pathways in development: dictyostelium as an experimental system.. Cell 58:235–239
    [Google Scholar]
  15. Forrester T. 1990; Release of ATP from heart: presentation of a release model using human erythrocytes.. Ann NY Acad Sci 603:335–352
    [Google Scholar]
  16. Gotessman M. M., Pastan I. 1993; Biochemistry of multidrug resistance mediated by the multidrug transporter.. Annu Rev Biochem 62:385–427
    [Google Scholar]
  17. Grygorczyk R., Tabcharani J. A., Hanrahan J. W. 1996; CFTR channels expressed in CHO cells do not have detectable ATP conductance.. J Membr Biol 151:139–148
    [Google Scholar]
  18. Guidotti G. 1996; ATP transport and ABC proteins.. Chem Biol 3:703–706
    [Google Scholar]
  19. Hieda K., Kobayishi K., Ito A., Ito T. 1984; Comparisons of the effects of vacuum-uv and far-uv synchrotron radiation on dry yeast cells of different uv sensitivities.. Radiat Res 98:74–81
    [Google Scholar]
  20. Ikehara T., Yamaguchi H., Hosokawa K., Yonezu T., Miyamoto H. 1986; Effects of nystatin on intracellular contents and membrane transport of alkali cations, and cell volume in HeLa cells.. J Membr Biol 90:231–240
    [Google Scholar]
  21. Jakubowski H., Goldman E. 1988; Evidence for cooperation between cells during sporulation of the yeast Saccbaromyces cerevisiae.. Mol Cell Biol 8:5166–5178
    [Google Scholar]
  22. Kovac L., Bohmerova E., Butko P. 1982; lonophores and intact cells.. Biocbim Biophys Acta 721:341–348
    [Google Scholar]
  23. Kuchler K., Thorner J. 1992; Functional expression of human mdr1 in the yeast Saccbaromyces cerevisiae.. Proc Natl Acad Sci USA 89:2302–2306
    [Google Scholar]
  24. Lewis C., Neidhart S., Holy C., North R. A., Buell G., Surprenant A. 1995; Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons.. Nature 377:432–435
    [Google Scholar]
  25. Li C., Ramjeesingh M., Bear C. E. 1996; Purified cystic fibrosis transmembrane conductance regulator (CFTR) does not function as an ATP channel.. J Biol Chem 271:11623–11626
    [Google Scholar]
  26. Matin A., Matin M. K. 1982; Cellular levels, excretion, and synthesis rates of cyclic AMP in E. coli grown in continuous culture.. J Bacteriol 149:801–807
    [Google Scholar]
  27. Nosaka K. 1990; High affinity of acid phosphatase encoded by PHO3 gene in Saccbaromyces cerevisiae for thiamin phosphates.. Biochim Biophys Acta 1037:147–154
    [Google Scholar]
  28. Pogolotti A. L., Santi D. V. 1982; High-pressure liquid chromatography-ultraviolet analysis of intracellular nucleotides.. Anal Biochem 126:335–345
    [Google Scholar]
  29. Reddy M. M., Quinton P. M., Haws C., Wine J. J., Grygorczyk R., Tabcharani J. A., Hanrahan J. W., Gunderson K. L., Kopito R. R. 1996; Failure of the cystic fibrosis transmembrane conductance regulator to conduct ATP.. Science 271:1876–1879
    [Google Scholar]
  30. Reisin I. L., Prat A. G., Abraham E. H., Amara J. F., Gregory R. J., Ausiello D. A., Cantiello H. F. 1994; The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel.. J Biol Chem 269:20584–20591
    [Google Scholar]
  31. Saier M. H., Feucht B. U., McCaman M. T. 1975; Regulation of intracellular adenosine cyclic 3ʹ, 5ʹ-rnonophosphate levels in E. coli and S. typhimurium.. J Biol Chem 250:7593–7601
    [Google Scholar]
  32. Schwiebert E. M., Egan M. E., Hwang T. H., Fulmer S. B., Allen S. S., Cutting G. R., Guggino W. B. 1995; CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP.. Cell 81:1063–1073
    [Google Scholar]
  33. Sedaa K. O., Bjur R. A., Shinozuka K., Westfall D. P. 1989; Nerve and drug-induced release of adenine nucleosides and nucleotides from rabbit aorta.. J Pharmacol Exp Ther 252:1060–1067
    [Google Scholar]
  34. Serrano R. 1988; H+-ATPase from plasma membranes of Saccbaromyces cerevisiae and Avene sativa roots: purification and reconstitution.. Methods Enzymol 157:533–538
    [Google Scholar]
  35. Servos J., Hasse E., Brendel M. 1993; Gene SNQ2 of Saccbaromyces cerevisiae, which confers resistance to 4-nitroquinoline-N-oxide and other chemicals, encodes a 169 kDa protein homologous to ATP-dependent permeases.. Mol Gen Genet 236:214–218
    [Google Scholar]
  36. Sherman F., Fink G. R., Hicks J. A. 1986; Laboratory Manual for Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory..
    [Google Scholar]
  37. Smith M. E., Dickinson J. R., Wheals A. E. 1990; Intracellular and extracellular levels of cyclic AMP during the cell cycle of Saccbaromyces cerevisiae.. Yeast 6:53–60
    [Google Scholar]
  38. Thevelein J. M., Beullens M., Honshoven F., Hoebeeck G., Detremerie K., Den Hollander J. A., Jans A. W. H. 1987a; Regulation of the cAMP level in the yeast Saccbaromyces cerevisiae: intracellular pH and the effect of membrane depolarizing compounds.. J Gen Microbiol 133:2191–2196
    [Google Scholar]
  39. Thevelein J. M., Beullens M., Honshoven F., Hoebeeck G., Detremerie K., Griewel B., Den Hollander J. A., Jans A. W. H. 1987b; Regulation of the cAMP level in the yeast Saccbaromyces cerevisiae: the glucose-induced cAMP signal is not mediated by a transient drop in the intracellular pH.. J Gen Microbiol 133:2197–2205
    [Google Scholar]
  40. Vogel K., Hinnen A. 1990; The yeast phosphatase system.. Mol Microbiol 4:2013–2017
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-6-1901
Loading
/content/journal/micro/10.1099/00221287-143-6-1901
Loading

Data & Media loading...

Most cited Most Cited RSS feed