1887

Abstract

Chlamydiae exhibit low interspecies DNA homology and plasmids from different chlamydial species can be readily distinguished by Southern blot analysis and restriction enzyme profiling. In contrast, available plasmid sequence data from within the species indicate that plasmids from human isolates are highly conserved. To evaluate the nature and extent of plasmid variation, the complete nucleotide sequences were determined for novel plasmids from three diverse non-human chlamydial isolates: pCpA1 from avian (N352); pCpnE1 from equine (N16); and pMoPn from mouse pneumonitis. Comparison of the sequence data did not identify an overall biological function for the plasmid but did reveal considerable sequence conservation (> 60%) and a remarkably consistent genomic arrangement comprising eight major ORFs and four 22 bp tandem repeats. The plasmid sequences were close to 7500 nucleotides in length (pCpA1, 7553 bp; pMoPn, 7502 bp) however the equine plasmid was smaller (7362 bp) than all other chlamydial plasmids. The reduced size of this plasmid was due to a single large deletion occurring within ORF 1; this potentially generates two smaller ORFs. The disruption of ORF 1 is the only significant variation identified amongst the chlamydial plasmids and could prove important for future vector development studies.

Keyword(s): chlamydia and plasmid
Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-6-1847
1997-06-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/6/mic-143-6-1847.html?itemId=/content/journal/micro/10.1099/00221287-143-6-1847&mimeType=html&fmt=ahah

References

  1. An Q., Radcliffe G., Vassallo R., Buxton D., O'Brien W. J., Pelletier D. A., Weisburg W. G., Klinger J. D., Olive D. M. 1992; Infection with a plasmid-free variant Chlamydia related to Chlamydia trachomatis identified by using multiple assays for nucleic acid detection.. J Clin Microbiol 30:2814–2821
    [Google Scholar]
  2. Birkelund S., Stephens R. S. 1992; Construction of physical and genetic maps of Chlamydia trachomatis serovar L2 by pulsed-field gel electrophoresis.. J Bacteriol 174:2742–2747
    [Google Scholar]
  3. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA.. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  4. Black C. M., Barnes R. C., Birkness K. A., Holloway B. P., Mayer L. W. 1989; Nucleotide sequence of the common plasmid of Chlamydia trachomatis L2: use of compatible deletions to generate overlapping fragments.. Curr Microbiol 19:67–74
    [Google Scholar]
  5. Black C. M., Peterson B., Messmer T. O., Storey C., Uhlen M., Olsvik O. 1994; Identification of three types of 16s rDNA genes in Chlamydia pneumoniae strains of human and nonhuman origin. In Chlamydia1 Infections, Proceedings of the 8th International Symposium on Human Chlamydia1 Infections, pp. 193-196. Edited by J. Orfila and others. Bologna : Societa Editrice Esculapo..
    [Google Scholar]
  6. Buissan J. P., Roy P. H. 1991; The 7⋅5 kb plasmid of Chlamydia trachomatis codes for a site-specific recombinase. In Abstracts of the 31 st Znterscience Conference on Antimicrobial Agents and Chemotherapy, abstract 81, p. 112. Washington, DC: American Society for icrobiology..
    [Google Scholar]
  7. Campbell L. A., Kuo C.-C., Grayston J. T. 1987; Characterization of the new Chlamydia agent, TWAR, as a unique organism by restriction endonuclease analysis and DNA-DNA hybridization.. J Cfin Microbiol 25:1911–1916
    [Google Scholar]
  8. Carter M. W., Al-Mahdawi S.A. H., Giles I. G., Treharne J. D., Ward M. E., Clarke I. N. 1991; Nucleotide sequence and taxonomic value of the outer membrane protein gene of Chlamydia pneumoniae IOL-207.. J Gen Microbiol 137:465–475
    [Google Scholar]
  9. Clarke I. N., Hatt C. 1986; Zn vitro transcription/translation analysis of cloned plasmid DNA from Chlamydia trachomatis serovar L1. In Chlamydiaf Znfections, Proceedings of the 6th International Symposium on Human Chlamydial Infections, pp. 85-88. Edited by D. Oriel, G. Ridgeway, D. Taylor-Robinson & M. E. Ward. Cambridge: Cambridge University Press..
    [Google Scholar]
  10. Comanducci M., Ricci S., Ratti G. 1988; The structure of a plasmid of Chlamydia trachomatis believed to be required for growth within mammalian cells.. Mol Microbiol 2:531–538
    [Google Scholar]
  11. Comanducci M., Ricci S., Cevenini R., Ratti G. 1990; Diversity of the Chlamydia trachomatis common plasmid in biovars with different pathogenicity.. Plasmid 23:149–154
    [Google Scholar]
  12. Comanducci M., Cevenini R., Moroni A., Giuliani M. M., Ricci S., Scarlato V., Ratti G. 1993; Expression of a plasmid gene of Chlamydia trachomatis encoding a novel 28 kDa antigen.. J Gen Microbiol 139:1083–1092
    [Google Scholar]
  13. Comanducci M., Manetti R., Bini L., Santucci A., Pallini V., Cevenini R., Suer J.-M., Orfila J., Ratti G. 1994; Humoral response to plasmid protein pgp3 in patients with Chlamydia trachomatis infection.. Infect Zmmun 62:5491–5497
    [Google Scholar]
  14. D'Alessio J. M., Bebee R., Hartley J. L., Noon M. C., Polayes D. 1992; Lambda Ziplox: automatic subcloning of cDNA.. Focus 14:76–79
    [Google Scholar]
  15. Eberhard W. G. 1989; Why do bacterial plasmids carry some genes and not others?. Plasmid 21:167–174
    [Google Scholar]
  16. Fahr M. J., Sriprakash K. S., Hatch T. P. 1992; Convergent and overlapping transcripts of the Chlamydia trachomatis 7⋅5 kb plasmid.. Plasmid 28:247–257
    [Google Scholar]
  17. Filutowicz M., McEachern M.J., Helinski D. R. 1986; Positive and negative roles of an initiator protein at an origin of replication.. Proc Natl Acad Sci USA 83:9645–9649
    [Google Scholar]
  18. Fitch W. M., Peterson E. M., de la Maza L. M. 1993; Phylogenetic analysis of the outer-membrane protein genes of chlamydiae, and its implication for vaccine development.. Mol Biof Evol 10:892–913
    [Google Scholar]
  19. Fukushi H., Hirai K. 1992; Proposal of Chlamydia pecorum sp. nov. for Chlamydia strains derived from ruminants.. Znt J Syst Bacteriol 42:306–308
    [Google Scholar]
  20. Girjes A. A., Hugall A. F., Timms P., Lavin M. F. 1988; TWO distinct forms of Chlamydia psittaci associated with disease and infertility in Phascofarctos cinereus (Koala). . Znfect Zmmun 56:1897–1900
    [Google Scholar]
  21. Hatch T. P. 1988; The metabolism of Chlamydia. In Microbiology of Chlamydia, pp. 98-110. Edited by Alman L. Barron. Boca Raton, FL: CRC Press..
    [Google Scholar]
  22. Hatt C., Ward M. E., Clarke I. N. 1988; Analysis of the entire sequence of the cryptic plasmid of Chlamydia trachomatis serovar L1. Evidence for involvement in DNA replication.. Nucleic Acids Res 16:4053–4067
    [Google Scholar]
  23. Hattori M., Sakaki Y. 1986; Dideoxy sequencing method using denatured plasmid templates.. Anal Biochem 152:232–238
    [Google Scholar]
  24. Hein J. J. 1990; Unified approach to alignment and phylogenies.. Methods Enzymol 183:626–645
    [Google Scholar]
  25. Hiraga S. 1992; Chromosome and plasmid partition in Escherichia coli. . Annu Rev Biochem 61:283–306
    [Google Scholar]
  26. Hugall A., Timms P., Girjes A. A., Lavin M. F. 1989; Conserved DNA sequences in chlamydial plasmids.. Plasmid 22:91–98
    [Google Scholar]
  27. Joseph T., Nano F. E., Garon C. F., Caldwell H. D. 1986; Molecular characterization of Chlamydia trachomatis and Chfamydia psittaci plasmids.. Infect Zmmun 51:699–703
    [Google Scholar]
  28. Kahane A., Sarov I. 1986; Cloning of a chlamydial plasmid : its use as a probe and in vitro analysis of encoded polypeptides.. Curr Microbiol 14:255–258
    [Google Scholar]
  29. Kaltenboeck B., Kousoulas K., Storz J. 1993; Structures of and allelic diversity and relationships among the major outer membrane protein (ompA) genes of the four chlamydial species.. J Bacteriol 175:487–502
    [Google Scholar]
  30. Kingsbury D. T., Weiss E. 1968; Lack of deoxyribonucleic acid homology between species of the genus Chlamydia. . J Bacteriol 96:1421–1423
    [Google Scholar]
  31. Lovett M., Kuo K.-K., Holmes K., Falkow S. 1980; Plasmids of the genus Chlamydia. In Current Chemotherapy and Znfectious Diseases, vol. 2, pp. 1250-1252. Edited by J. Nelson & C. Grassi. Washington, DC : American Society for Microbiology..
    [Google Scholar]
  32. Lusher M., Storey C. C., Richmond S. J. 1989; Plasmid diversity within the genus Chlamydia.. J Gen Microbiol 135:1145–1151
    [Google Scholar]
  33. Lusher M., Storey C. C., Richmond S. J. 1991; Extrachromosomal elements of the genus Chlamydia.. Adv Gene Techno1 2:261–285
    [Google Scholar]
  34. McClenaghan M., Honeycombe J. R., Bevan B. J., Herring A. J. 1988; Distribution of plasmid sequences in avian and mammalian strains of Chfamydia psittaci.. J Gen Microbiol 134:559–565
    [Google Scholar]
  35. Motallebi-Veshareh M., Rouch D. A., Thomas C. M. 1990; A family of ATPases involved in active partitioning of diverse bacterial plasmids.. Mol Microbiol 4:1455–1463
    [Google Scholar]
  36. Nigg C. 1942; An unidentified virus which causes pneumonia and systemic infection in mice.. Science 95:49–50
    [Google Scholar]
  37. Novick R. P. 1987; Plasmid incompatibility.. Microbiol Rev 51:381–395
    [Google Scholar]
  38. Palmer L., Falkow S. 1986; A common plasmid of Chlamydia trachomatis.. Plasmid 16:52–62
    [Google Scholar]
  39. Patel I., Bastia D. 1987; A replication initiator protein enhances the rate of hybrid formation between a silencer RNA and an activator RNA.. Cell 51:455–462
    [Google Scholar]
  40. Pearce B. J., Fahr M. J., Hatch H. P., Sriprakash K. S. 1991; A chlamydial plasmid is differentially transcribed during the life cycle of Chlamydia trachomatis.. Plasmid 26:116–122
    [Google Scholar]
  41. Peterson E. M., Markoff B. A., Schachter J., de la Maza L. M. 1990; The 7⋅5 kb plasmid present in Chlamydia trachomatis is not essential for the growth of this micro-organism.. Plasmid 23:144–148
    [Google Scholar]
  42. Ricci S., Cevenini R., Cosco E., Comanducci M., Ratti G., Scarlato V. 1993; Transcriptional analysis of the Chlamydia trachomatis plasmid pCT identifies temporally regulated transcripts, anti-sense RNA and sigma70-selected promoters.. Mol Gcn Genet 237:318–326
    [Google Scholar]
  43. Ricci S., Ratti G., Scarlato V. 1995; Transcriptional regulation in the Chlamydial trachomatis pCT plasmid.. Gene 154:93–98
    [Google Scholar]
  44. Richmond S. J., Stirling P., Ashley C. R. 1982; Virus infecting tht: reticulate bodies of an avian strain of Chlamydia psittaci.. FEMS Microbiol Lett 14:31–36
    [Google Scholar]
  45. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
    [Google Scholar]
  46. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors.. Proc Nut1 Acad Sci USA 74:5463–5467
    [Google Scholar]
  47. Schachter J., Meyer K. F. 1969; Lymphogranuloma venereum 11. Characterisation of some recently isolated strains.. J Bacteriol 99:636–638
    [Google Scholar]
  48. Sriprakash K. S., MacAvoy E. S. 1987; Characterization and sequence of a plasmid from the trachoma biovar of Chlamydia trachomatis.. Plasmid 18:205–214
    [Google Scholar]
  49. Sriprakash K. S., Pearce B. J. 1990); Mapping of transcripts encoded by the plasmid in Chlamydia trachomatis.. FEMS Microbiol Lett 71:299–304
    [Google Scholar]
  50. Storey C. C., Lusher M., Richmond S. J. 1989; Analysis of the complete nucleotide sequence of Chpl, a phage from an avian strain of Chlamydia psittaci.. J Gen Virol 70:3383–3390
    [Google Scholar]
  51. Storey C. C., Lusher M., Yates P., Richmond S. J. 1993; Evidence for Chlamydia pneurnoniae of non-human origin.. J Gen Microbiol 139:2621–2626
    [Google Scholar]
  52. Tam J. E., Davis C. H., Thresher R. J., Wyrick P. B. 1992; Location of the origin of replication for the 7⋅5 kb Chlamydia trachomatis plasmid.. Plasmid 27:231–236
    [Google Scholar]
  53. Tam J. E., Davis C. H., Wyrick P. B. 1994; Expression of recombinant DNA introduced into Chlamydia trachomatis by electroporation.. Can J Microbiol 40:583–591
    [Google Scholar]
  54. Thomas N. S., Clarke S. N. 1992; Revised map of the Chlamydia trachomatis (L1/440/LN) plasmid. In Proceedings of the 2nd European Society for Chlamydia1 Research, p. 42. Edited by P.-A. Mardh, M. la Placa & M. E. Ward. Bologna: Societa Editrice Esculapo..
    [Google Scholar]
  55. Thomas N. S., Clarke J. N. 1994; Molecular characterization of the plasmid from the Chlamydia trachomatis mouse pneumonitis biovar. In Chlamydia1 Infections, Proceedings of the 8th International Symposium on Human Chlamydial Infections, pp. Edited by J. Orfila and others. Bologna : Societa ditrice Esculapo.. 251–254
    [Google Scholar]
  56. Tirnms P., Eaves F. W., Hugall A. F., Lavin M. F. 1988; Plasmids of Chlamydia psittaci: comparison of isolates by Southern hybridization.. FEMS Microbiol Lett 51:119–124
    [Google Scholar]
  57. Ward M. E. 1988; The chlamydia1 developmental cycle. In Microbiology of Chlamydia, pp. dited by Alman L. Barron. Boca Raton, FL: CRC Press. 71–95
    [Google Scholar]
  58. Wills J. M., Watson G., Lusher M., Mair T. S., Wood D., Richmond S. J. 1990; Characterization of Chlamydia psittaci isolated from a horse.. Vet Microbiol 24:11–19
    [Google Scholar]
  59. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains : nucleotide sequences of the M13mp18 and pUC19 vectors.. Gelze 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-6-1847
Loading
/content/journal/micro/10.1099/00221287-143-6-1847
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error