1887

Abstract

A gene-replacement mutagenesis method has been developed for the anaerobic, sulfate-reducing bacterium Hildenborough and used to delete encoding a potential oxygen or redox sensor with homology to the methyl-accepting chemotaxis proteins. A suicide plasmid, containing a -marked allele and a counter-selectable marker was transferred from S17-1 to by conjugation. Following plasmid integration the desired deletion mutant ( F100) was obtained in media containing sucrose and chloramphenicol. Southern blot screening was required to distinguish F100 from strains in which the marker was inactivated by transposition of an endogenous IS element. No anaerotactic deficiency has so far been detected in F100, which was found to be more resistant to inactivation by oxygen than the wild-type. Increased transcription of the operon, located immediately downstream from was demonstrated by Northern blotting and may be the cause of this unusual phenotype, in view of the recent discovery that Rbo can complement the deleterious effects of superoxide dismutase deficiency in

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-6-1815
1997-06-01
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/6/mic-143-6-1815.html?itemId=/content/journal/micro/10.1099/00221287-143-6-1815&mimeType=html&fmt=ahah

References

  1. Argyle J. L., Rapp-Giles B. J., Wall J. D. 1992; Plasmid transfer by conjugation in Desulfovibrio desulfuricans.. FEMS Micribiol Lett 94:255–262
    [Google Scholar]
  2. Blomfield I. C., Vaughn V., Rest R. F., Eisenstein B. I. 1991; Allelic exchange in Escherichia coli using the Bacillus subtilis sacB and a temperature-sensitive pSClOl replicon.. Mol Microbiol 5:1447–1457
    [Google Scholar]
  3. Brown T. 1990; Analysis of RNA by Northern and slot blot hybridization. In Current Protocols in Molecular Biology, pp.. 4.9.1–4.9.14 Edited by F. M. Ausubel and others. New York: Green Publishing Associates and Wiley Interscience..
    [Google Scholar]
  4. Brumlik M. J., Voordouw G. 1989; Analysis of the transcriptional unit encoding the genes for rubredoxin (rub) and a putative rubredoxin oxidoreductase (rbo) in Desulfovibrio vulgaris Hildenborough.. J Bacteriol 171:4996–5004
    [Google Scholar]
  5. Cai Y., Wolk C. P. 1990; Use of a conditional lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences.. J Bacteriol 172:3139–3145
    [Google Scholar]
  6. Deckers H., Voordouw G. 1994; Identification of a large family of genes for putative chemoreceptor proteins in an ordered library of the Desulfovibrio vulgaris Hildenborough genome.. J Bacteriol 176:351–358
    [Google Scholar]
  7. Diliing W., Cypionka H. 1990; Aerobic respiration in sulfate-reducing bacteria.. FEMS Microbiol Lett 71:123–128
    [Google Scholar]
  8. Dolla A., Fu R., Brumlik M. J., Voordouw G. 1992; Nucleotide sequence of drcA, a Desulfovibrio vulgaris Hildenborough chemoreceptor gene, and its expression in Escherichia coli.. J Bacteriol 174:1726–1733
    [Google Scholar]
  9. Dower W. J., Miller J. F., Ragsdale C. W. 1988; High efficiency transformation of E. coli by high voltage electroporation.. Nucleic Acids Res 16:6127–6145
    [Google Scholar]
  10. Fu R., Wall J. D., Voordouw G. 1994; DcrA, a c-type heme-containing methyl-accepting protein from Desulfovibrio vulgaris Hildenborough senses the oxygen concentration or redox potential of the environment.. J Bacteriol 176:344–350
    [Google Scholar]
  11. Gay P., LeCoq D., Steinmetz M., Berkelman T., Kado C. I. 1985; Positive selection procedure for the entrapment of insertion sequence elements in Gram-negative bacteria.. J Bacteriol 164:918–921
    [Google Scholar]
  12. Johnson M. S., Zhulin I. B., Sarmiento L. E., Taylor B. L. 1995; Aerotaxis in the anaerobic organism Desulfovibrio vulgaris. In Proceedings of the BLAST 111 Meeting on Bacterial Locomotion and Signal Transduction, Austin, Texas, January 12-16, 1995, Abstract 45..
    [Google Scholar]
  13. Kamoun S., Tola E., Kamdar H., Kado C. I. 1991; Rapid generation of directed and unmarked deletion in Xanthomonas.. Mol Microbiol 6:809–816
    [Google Scholar]
  14. Kaniga K., Delor I., Cornelis G. R. 1991; A wide-host range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica.. Gene 109:137–141
    [Google Scholar]
  15. Lillebaek R. 1995; Application of antisera raised against sulfate-reducing bacteria for indirect immunofluorescent detection of immunoreactive bacteria in sediment from the German Baltic Sea.. Appl Environ Microbiol 61:3436–3442
    [Google Scholar]
  16. Macnab R. M. 1987; Motility and chemotaxis. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1, pp.. 732–759 Edited by F. C. Neidhardt, J. L. Ingraham, K. Brooks Low, B. Magasanik, M. Schaechter & H. E. Umbarger. Washington, DC: American Society for Microbiology..
    [Google Scholar]
  17. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms.. J Mol Biol 3:208–218
    [Google Scholar]
  18. Pianzzola M. J., Soubes M., Touati D. 1996; Overproduction of the rbo gene product from Desulfovibrio spp. suppresses all the deleterious effects of lack of superoxide dismutase in E. coli.. J Bacteriol 178:6736–6742
    [Google Scholar]
  19. Postgate J. R. 1984; The Sulfate-Reducing Bacteria, 2nd edn. Cambridge: Cambridge University Press..
    [Google Scholar]
  20. Powell B., Mergeay M., Christofi N. 1989; Transfer of broad host-range plasmids to sulphate-reducing bacteria.. FEMS Microbiol Lett 59:269–274
    [Google Scholar]
  21. Priefer U. B., Simon R., Pühler A. 1985; Extension of the host range of Escherichia coli vectors by incorporation of RSF1010 replication and mobilization functions.. J Bacteriol 163:324–330
    [Google Scholar]
  22. Quandt J., Hynes M. F. 1993; Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria.. Gene 127:15–21
    [Google Scholar]
  23. Ramsing N. B., Kühl M., Jorgensen B. B. 1993; Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes.. Appl Environ Microbiol 59:3840–3849
    [Google Scholar]
  24. Reddy K. J., Gilman M. 1990; Preparation of bacterial RNA. In Current Protocols in Molecular Biology, pp.. 4.4.1–1.4.7 Edited by F. M. Ausubel and others. New York: Green Publishing Associates and Wiley Interscience..
    [Google Scholar]
  25. Ried J. L., Collmer A. 1987; An nptI-sacB-sacR cartridge for constructing directed, unmarked mutations in Gram-negative bacteria by marker exchange-eviction mutagenesis.. Gene 57:239–246
    [Google Scholar]
  26. Rousset M., Dermoun Z., Chippaux M., Belaich J. P. 1991; Marker exchange mutagenesis of the hydN genes in Desulfovibrio fructosovorans.. Mol Microbiol 5:1735–1740
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory..
    [Google Scholar]
  28. Schweizer H. P. 1992; Allelic exchange in Pseudomonas aeruginosa using novel ColEl-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker.. Mol Microbiol 6:1195–1204
    [Google Scholar]
  29. Schweizer H. P., Hoang T. T. 1995; An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa.. Gene 158:15–22
    [Google Scholar]
  30. Simon R., Priefer U., Pühler A. 1983; A broad-host-range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria.. Bio/Technology 1:784–791
    [Google Scholar]
  31. Staudenbauer W. L., Dubbert W. 1993; Genetics and molecular biology of chloramphenicol acetyltransferase of Clostridium butyricum. In Genetics and Molecular Biology of Anaerobic Bacteria, pp.. 174–178 Edited by M. Sebald. New York: Springer..
    [Google Scholar]
  32. Steinmetz M., Le Coq D., Ben Djemia H., Gay P. 1983; Analyse génétique de sacB, géne de structure d’une enzyme secrétée, la lévan-saccharase de Bacillus subtilis Marburg.. Mol Gen Genet 191:138–144
    [Google Scholar]
  33. Sznyter L. A., Slatko B., Moran L., O’Donnell K. H., Brooks J. E. 1987; Nucleotide sequence of the DdeI restriction-modification system and characterization of the methylase protein.. Nucleic Acids Res 20:8249–8266
    [Google Scholar]
  34. Van den Berg W. A. M., Stokkermans J. P. W. G., van Dongen W. M. A. M. 1989; Development of a plasmid transfer system for the anaerobic sulfate reducer, Desulfovibrio vulgaris.. J Biotecbnol 12:173–184
    [Google Scholar]
  35. Van Dongen W. M. A. M., Stokkermans J. P. W. G., van den Berg W. A. M. 1994; Genetic manipulation of Desulfovibrio.. Methods Enzymol 243:319–330
    [Google Scholar]
  36. Voordouw G. 1995; The genus Desulfovibrio: the centennial.. Appl Environ Microbiol 61:2813–2819
    [Google Scholar]
  37. Voordouw G., Strang J. D., Wilson F. R. 1989; Organization of the genes encoding [Fe] hydrogenase in Desulfovibrio vulgaris subsp. oxamicus Monticello.. J Bacteriol 171:3881–3889
    [Google Scholar]
  38. Wall J. D. 1993; Genetics of the sulfate-reducing bacteria. In The Sulfate-reducing Bacteria: Contemporary Perspectives, pp.. 77–87 Edited by J. M. Odom & R. Singleton, Jr. New York: Springer..
    [Google Scholar]
  39. Wall J. D., Rapp-Giles B. J., Rousset M. 1993; Characterization of a small plasmid from Desulfovibrio desulfuricans and its use for shuttle vector construction.. J Bacteriol 175:4121–4128
    [Google Scholar]
  40. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors.. Gene 33:103–119
    [Google Scholar]
/content/journal/micro/10.1099/00221287-143-6-1815
Loading
/content/journal/micro/10.1099/00221287-143-6-1815
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error