1887

Abstract

In this study, four clinical isolates and over 100 colony morphology mutants, previously derived spontaneously from strain 3153A during growth on glucose medium, were examined for their utilization of 21 carbon and 3 nitrogen sources at various growth temperatures. The results demonstrated extensive variability in the pattern of assimilation among the mutants and strains, including both the gain and loss of assimilating functions. The persistent alterations in assimilation patterns observed in sequentially produced subclones illustrated an extensive ability of populations to constantly produce new combinations of assimilating functions. The variability among spontaneous mutants derived from a single strain explains the well documented variability among natural isolates. From these results we established a relationship between the previously documented broad spectrum of spontaneous chromosomal aberrations in these mutants to the expression of genes controlling the utilization of alternative carbon and nitrogen sources. The existence of cryptic genes, responsible for growth on alternative substrates, was previously deduced from the analysis of other mutants obtained as a response to the restrictive condition on media containing non-assimilating carbon sources. Thus, mutants with altered assimilation functions can arise either on glucose medium or by selection on restricted media. Extensive differences between the patterns of chromosomal aberrations and the distribution of correlated phenotypes in the two groups of mutants indicated that the same phenotypes may be produced by two different mechanisms involving the same or different genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-5-1765
1997-05-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/5/mic-143-5-1765.html?itemId=/content/journal/micro/10.1099/00221287-143-5-1765&mimeType=html&fmt=ahah

References

  1. Asakura K., Iwaguchi S.-I., Homma M., Sukai T., Higashide K., Tanaka K. 1991; Electrophoretic karyotypes of clinically isolated yeasts of Candida albicans and C. glabrata. J Gen Microbiol 137:2531–2538
    [Google Scholar]
  2. Borst P., Greaves D. R. 1987; Programmed gene rearrangements altering gene expression. Science 235:658–667
    [Google Scholar]
  3. Brown-Thomsen J. 1968; Variability in Candida albicans. Hereditas 60:355–398
    [Google Scholar]
  4. Cairns J., Overbaugh J., Miller S. 1988; The origin of mutants. Nature 335:142–145
    [Google Scholar]
  5. Hall B. G. 1982; Chromosomal mutation for citrate utilization by Escherichia coli K-12. J Bacteriol 151:269–273
    [Google Scholar]
  6. Hall B. G., Betts P. W., Kricker M. 1986; Maintenance of the cellobiose utilization genes of Escherichia coli in a cryptic state. Mol Biol Evol 3:389–402
    [Google Scholar]
  7. Howard D. H., Zeuthen M. L., Dabrowa N. 1986; Phenotypic characteristics of a slow-growing, nongerminating variant of Candida albicans. J Gen Microbiol 132:2359–2366
    [Google Scholar]
  8. Lee K. L., Buckley H. R., Campbell C. C. 1975; An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 13:148–153
    [Google Scholar]
  9. Mackinnon J. E. 1940; Dissociation in Candida albicans. J Infect Dis 66:59–77
    [Google Scholar]
  10. Malavasic M. J., Cihlar R. L. 1992; Growth response of several Candida albicans strains to inhibitory concentrations of heavy metals. J Med Vet Mycol 30:421–432
    [Google Scholar]
  11. Meitner S. W., Bowen W. H., Haidaris S. G. 1990; Oral and esophogeal Candida albicans infection in hyposalivatory rats. Infect Immun 58:2228–2236
    [Google Scholar]
  12. Merk. 1983; Merk Index, 10th edn. Rahway, NJ: Merk and Co. Inc..
    [Google Scholar]
  13. Merz W. G., Connelly C., Heiter P. 1988; Variation of electrophoretic karyotypes among clinical isolates of Candida albicans. J Clin Microbiol 26:842–845
    [Google Scholar]
  14. Negroni P. 1935; Variacion hacia el tipo R de Mycotorula albicans. Rev Soc Argent Bio 11:449–453
    [Google Scholar]
  15. Nochur S. V., Roberts M. F., Demain A. L. 1990; Mutation of Clostridium thermocellum in the presence of certain carbon sources. FEMS Microbiol Lett 71:199–204
    [Google Scholar]
  16. Odds F. C. 1988; Candida and Candidosis. London: Balliere Tindall..
    [Google Scholar]
  17. Odds F. C., Abbott A. B. 1980; A simple system for the presumptive identification of Candida albicans and differentiation of strains within the species. Sabouraudia 18:301–318
    [Google Scholar]
  18. Odds F. C., Auger P., Krogh P., Neely A. N., Segal E. 1989; Biotyping of Candida albicans: results of an international collaborative study. J Clin Microbiol 27:1506–1509
    [Google Scholar]
  19. Paquin C. E., Williamson V. M. 1984; Temperature effects on the rate of Ty transposition. Science 226:53–54
    [Google Scholar]
  20. Pomés R., Gil C., Nombela C. 1985; Genetic analysis of Candida albicans morphological mutants. J Gen Microbiol 131:2107–2113
    [Google Scholar]
  21. Reynolds A. E., Felton J., Wright A. 1981; Insertion of DNA activates the cryptic bgl operon in E. coli K12. Nature 293:625–629
    [Google Scholar]
  22. Rikkerink E. H. A., Magee B. B., Magee P. T. 1988; Opaque–white transition: a programmed morphological transition in Candida albicans. J Bacteriol 170:895–899
    [Google Scholar]
  23. Roeder G. S., Fink G. 1980; DNA rearrangements associated with a transposable element in yeast. Cell 21:239–249
    [Google Scholar]
  24. Rustchenko E. P., Curran T., Sherman F. 1993; Variations in the number of ribosomal DNA cistrons in normal and mutant strains of Candida albicans and in normal strains of Sacc-haromyces cerevisiae. J Bacteriol 175:7189–7199
    [Google Scholar]
  25. Rustchenko E. P., Howard D. H., Sherman F. 1994; Chromosomal alterations of Candida albicans are associated with the gain and loss of assimilating functions. J Bacteriol 176:3231–3241
    [Google Scholar]
  26. Rustchenko-Bulgac E. P. 1991; Variation of Candida albicans electrophoretic karyotypes. J Bacteriol 173:6586–6596
    [Google Scholar]
  27. Rustchenko-Bulgac E. P., Howard D. H. 1993; Multiple chromosomal and phenotypic changes in spontaneous mutants of Candida albicans. J Gen Microbiol 139:1195–1207
    [Google Scholar]
  28. Rustchenko-Bulgac E. P., Sherman F., Hicks J. B. 1990; Chromosomal rearrangements associated with morphological mutants provide a means for genetic variation of Candida albicans. J Bacteriol 172:1276–1283
    [Google Scholar]
  29. Sherman F., Fink G. R., Hicks J. B. 1986; Laboratory Course Manual for Yeast Genetics and Molecular Biology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory..
    [Google Scholar]
  30. Slutsky B., Buffo J., Soll D. R. 1985; High frequency switching of colony morphology in Candida albicans. Science 230:666–669
    [Google Scholar]
  31. Slutsky B., Staebell M., Anderson J., Risen L., Pfaller M., Soll D. R. 1987; ‘White–opaque transition’: a second high-frequency switching system in Candida albicans. J Bacteriol 169:189–197
    [Google Scholar]
  32. Soll D. R. 1990; Dimorphism and high frequency switching in Candida albicans. In The Genetics of Candida albicans, pp.. 147–176 Edited by D. Kirsch, R. Kelly & M. B. Kurtz. Boca Raton, FL: CRC Press
    [Google Scholar]
  33. Steele D. F., Jinks-Robertson S. 1992; An examination of adaptive reversion in Saccharomyces cerevisiae. Genetics 132:9–21
    [Google Scholar]
  34. Suzuki T., Kobayashi I., Kanbe T., Tanaka K. 1989; High frequency variation of colony morphology and chromosome reorganization in the pathogenic yeast Candida albicans. J Gen Microbiol 135:425–434
    [Google Scholar]
  35. Suzuki T., Miyamae Y., Ishida I. 1991; Variation of colony morphology and chromosomal rearrangement in Candida trop-icalis. J Gen Microbiol 137:161–167
    [Google Scholar]
  36. Thrash-Bingham C., Gorman J. 1992; DNA translocations contribute to chromosome length polymorphisms in Candida albicans. Curr Genet 22:93–100
    [Google Scholar]
  37. Vasilas A., Molina L., Hoffman M., Haidaris C. G. 1992; The influence of morphological variation on Candida albicans adhesion to denture acrylic in vitro. Arch Oral Biol 37:612–622
    [Google Scholar]
  38. Vogel R. A., Sponcler R. S. 1970; The study and significance of colony dissociation in Candida albicans. Sabouraudia 7:273–278
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-5-1765
Loading
/content/journal/micro/10.1099/00221287-143-5-1765
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error