Control of pilin gene expression by environmental factors: involvement of the regulatory genes Free

Abstract

The control of the expression of the pilin gene () in under a wide variety of growth conditions has been studied. The expression of was measured using transcriptional fusions between and the gene encoding chloramphenicol acetyltransferase (CAT), and the level of pilin production was measured by Western blot analysis. Many of the conditions tested affected both growth rate and pilin gene expression (e.g. isoleucine, high osmolarity, high temperature, anaerobic growth, pH 6, urea and iron depletion). Changes in the level of many other proteins were also observed, depending on the conditions, indicating that gonococci undergo an adaptive response to environmental variations. Moreover, environment-induced changes in the level of many proteins, including pilin, seem to involve the regulatory system, which has been previously proposed to modulate the expression of the gonococcal pilin gene.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-5-1757
1997-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/5/mic-143-5-1757.html?itemId=/content/journal/micro/10.1099/00221287-143-5-1757&mimeType=html&fmt=ahah

References

  1. Biswas G. D., Sparling P. F. 1995; Characterisation of IbpA, the structural gene for a lactoferrin receptor in Neisseria gonorrhoeae. Infect Immun 63:2958–2967
    [Google Scholar]
  2. Corneiissen C. N., Sparling P. F. 1996; Binding and surface exposure characteristics of the gonococcal transferrin receptor are dependent on both transferrin-binding proteins. Bacteriol 178:1437–1444
    [Google Scholar]
  3. Di Rita V. J. 1992; Coordinate expression of virulence genes by toxR in Vibrio cholerae. Mol Microbiol 6:451–458
    [Google Scholar]
  4. Dupuy B., Taha M.-K., Pugsley A. P., Marchal C. 1991; Neisseria gonorrhoeae prepilin export studied in Escherichia coli. J Bacteriol 173:7589–7598
    [Google Scholar]
  5. Franck D. W., Storey D. G., Hindahl M. S., Iglewski B. H. 1989; Differential regulation by iron of regA and toxA transcript accumulation in Pseudomonas aeruginosa PA103 and PAOl. J Bacteriol 171:5304–5313
    [Google Scholar]
  6. Gorby G. L., Schaefer G. B. 1992; Effect of attachment factors (pili + opa) on Neisseria gonorrhoeae invasion of human fallopian tube tissue in vitro; quantitation by computerized image analysis. Microb Pathog 13:93–108
    [Google Scholar]
  7. Graeff-Wohlleben H., Deppisch H., Gross R. 1995; Global regulatory mechanisms affect virulence gene expression in Bordetella pertussis. Mol Gen Genet 247:86–94
    [Google Scholar]
  8. Keevil C. W., Major N. C., Davies D. B., Robinson A. 1986; Physiology and virulence determinants of Neisseria gonorrhoeae grown in glucose-, oxygen-, or cystine-limited continuous culture. J Gen Microbiol 132:3289–3302
    [Google Scholar]
  9. Keevil C. W., Davies D. B., Spillane B. J., Mahenthiralingam E. 1989; Influence of iron-limited and replete continuous culture on the physiology and virulence of Neisseria gonorrhoeae. J Gen Microbiol 135:851–863
    [Google Scholar]
  10. Larribe M., Taha M. K., Marchal C. 1991; Control of pilin gene expression in Neisseria gonorrhoeae by environmental factors. In Neisseriae 1990, pp. Kohl, C. Marchal, G. Morelli, A. Seiler & B. Thiesen. Berlin & New York: Walter de Gruyter. Walter de Gruyter Edited by M. Achtman 441–445
    [Google Scholar]
  11. Makino S., van Putten J. P. M., Meyer T. F. 1991; Phase variation of the opacity outer membrane protein controls invasion by Neisseria gonorrhoeae into epithelial cells. EMBO J 10:1307–1315
    [Google Scholar]
  12. Manetti R., Arico R., Rappuoli R. 1994; Mutations in the linker region of BvgS abolish response to environmental signals for the regulation of the virulence factors in Bordetella pertussis. Gene 150:123–127
    [Google Scholar]
  13. Molesh I. M., Boxberger J., Meyer T. F. 1994; Interaction of gonococci with primary epithelial cells from human ureter grown as monolayers and multicell vesicles. Eur J Cell Biol 63:143
    [Google Scholar]
  14. Pannekoek Y., Van Putten J. P. M., Dankert i. 1992; Identification and molecular analysis of a 63-kilodalton stress protein from Neisseria gonorrhoeae. J Bacteriol 174:6928–6937
    [Google Scholar]
  15. Prince R. W., Storey D. G., Vasil A. J., Vasil M. L. 1991; Regulation of toxA and regA by the Escherichia coli fur gene and identification of a Fur homologue in Pseudomonas aeruginosa PA103 and PAO1. Mol Microbiol 5:2823–2831
    [Google Scholar]
  16. Prugnola A., Arico B., Manetti R., Rappuoli R. 1995; Response of the bvg operon of Bordetella pertussis to different temperatures and short-term temperature shifts. Microbiology 141:2529–2534
    [Google Scholar]
  17. Robertson B. D., Meyer T. F. 1992; Genetic variation in pathogenic bacteria. Trends Genet 8:422–427
    [Google Scholar]
  18. Rudel T., Scheuerpflug I., Meyer T. F. 1995; Neisseria PilC protein identified as type-IV pilus tip-located adhesin. Nature 373:357–359
    [Google Scholar]
  19. Saikh K. U., Mitra S., Bhattacharyya F. K. 1989; Effects of amino acids on colony phenotype of Neisseria gonorrhoeae. lnfect lmmun 27:1090–1094
    [Google Scholar]
  20. Segal E., Billyard E., So M., Storzbach s., Meyer T. F. 1985; Role of chromosomal rearrangement in N . gonorrhoeae pilus phase variation. Cell 40:293–300
    [Google Scholar]
  21. Seifert H. S., So M. 1988; Genetic mechanisms of bacterial antigenic variation. Microbiol Rev 52:327–336
    [Google Scholar]
  22. Shaw W. V. 1975; Chloramphenicol acetyl transferase from chloramphenicol resistant bacteria. Methods Enzymol 43:737–755
    [Google Scholar]
  23. Swanson J., Robins K., Barrera O., Corwin D., Boslego J., Ciak J., Blake M., Koomey J. M. 1987; Gonococcal pilin variants in experimental gonorrhoea. J Exp Med 165:1344–1357
    [Google Scholar]
  24. Taha M. K. 1993; Increased sensitivity of gonococcal pilA mutants to bactericidal activity of normal human serum. Znfect lmmun 61:4662–4668
    [Google Scholar]
  25. Taha M. K., Giorgini D. 1995; Phosphorylation and functional analysis of PilA, a protein involved in the transcriptional regulation of the pilin gene in Neisseria gonorrhoeae. Mol Microbiol 15:667–677
    [Google Scholar]
  26. Taha M. K., So M., Seifert H. S., Billyard E., Marchal C. 1988; Pilin expression in Neisseria gonorrhoeae is under both positive and negative transcriptional control. EMBO J 7:4367–4378
    [Google Scholar]
  27. Taha M. K., Dupuy B., Saurin W., So M., Marchal C. 1991; Control of pilus expression in Neisseria gonorrhoeae as an original system in the two component regulators. Mol Microbiol 5:137–148
    [Google Scholar]
  28. Taha M. K., Larribe M., Dupuy B., Giorgini D., Marchal C. 1992; Role of pilA, an essential regulatory gene of Neisseria gonorrhoeae, in stress response. J Bacteriol 174:5978–5981
    [Google Scholar]
  29. Taha M. K., Giorgini D., Nassif X. 1996). ; The pilA regulatory gene modulates the pilus-mediated adhesion of Neisseria meningitidis by controlling the transcription of pilCl. Mol Microbiol 19:1073–1084
    [Google Scholar]
  30. Waldbeser L. S., Ajioka R. S., Men A. J., Puaoi D., Lin L., Thomas T. F., So M. 1994; The opaH locus of Neisseria gonorrhoeae MS11-A is involved in epithelial cell invasion. Mol Microbiol 13:919–928
    [Google Scholar]
  31. Watt P. J., Ward M. E. 1980; Adherence of Neisseria gonorrhoeae and other Neisseria species to mammalian cells. In Bacterial Adherence, pp. Edited by E. H. Beachey. London: Chapman & Hall.. 253–288
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-5-1757
Loading
/content/journal/micro/10.1099/00221287-143-5-1757
Loading

Data & Media loading...

Most cited Most Cited RSS feed