1887

Abstract

A new extradiol dioxygenase was cloned by screening a gene bank from the naphthalenesulfonate-degrading bacterial strain BN6 for colonies with 2,3-dihydroxybiphenyl dioxygenase (DHBPDO) activity. A 16 kb DNA fragment was sequenced and an ORF of 954 bp identified. Comparison of the deduced amino acid sequence of DHBPDO II from strain BN6 with previously published sequences showed the closest relationship to a metapyrocatechase (Mpcll) from JMP 222. Thus, the enzyme was only distantly related to the main groups of catechol 2,3-dioxygenases or DHBPDOs. The dioxygenase was expressed using a T7 expression vector and the enzymic characteristics of the protein were examined. The enzyme oxidized 2,3-dihydroxybiphenyl, 3-isopropylcatechol, 3-methylcatechol, 4-fluorocatechol and 1,2-dihydroxynaphthalene. Comparison of the UV/visible spectrum of the product formed from 3,5-dichlorocatechol with previous reports suggested that this substrate is oxidized by different extradiol dioxygenases either by proximal or distal ring cleavage. The enzyme required Fefor maximal activity. In contrast to most other extradiol dioxygenases, the enzyme consisted of only two identical subunits.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-5-1691
1997-05-01
2024-11-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/5/mic-143-5-1691.html?itemId=/content/journal/micro/10.1099/00221287-143-5-1691&mimeType=html&fmt=ahah

References

  1. Adams R. H., Huang C.-M., Higson F. K., Brenner V., Focht D. D. 1992; Construction of a 3-chlorobiphenyl-utilizing recombinant from an intergeneric mating. Appl Environ Microbiol 58:647–652
    [Google Scholar]
  2. Ahmad D., Fraser J., Sylvestre M., Larose A., Khan A., Bergeron J., Juteau J. M., Sondossi M. 1995; Sequence of the bphD gene encoding 2-hydroxy-6-oxo-(phenyl/chlorophenyl)hexa-2,4-dienoic acid (HOP/cHOP) hydrolase involved in the biphenyl/polychlorinated biphenyl degradation pathway in Comamonas testosteroni: evidence suggesting involvement of Ser112 in catalytic activity. Gene 156:69–74
    [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  4. Arensdorf J. J., Focht D. D. 1994; Formation of chlorocatechol meta cleavage products by a pseudomonad during metabolism of monochlorobiphenyls. Appl Environ Microbiol 60:2884–2889
    [Google Scholar]
  5. Asturias J. A., Timmis K. N. 1993; Three different 2,3-dihydroxybiphenyl 1,2-dioxygenase genes in the Gram-positive polychlorobiphenyl-degrading bacterium Rhodococcus globerulus P6. J Bacteriol 175:4631–4640
    [Google Scholar]
  6. Asturias J. A., Eltis L. D., Prucha M., Timmis K. N. 1994; Analysis of three 2,3-dihydroxybiphenyl 1,2-dioxygenases found in R. globerulus P6. J Biol Chem 269:7807–7815
    [Google Scholar]
  7. Bartels I., Knackmuss H.-J., Reineke W. 1984; Suicide inactivation of catechol 2,3-dioxygenase from P. putida mt-2 by 3-halocatechols. Appl Environ Microbiol 47:500–505
    [Google Scholar]
  8. Boldt Y. R., Sadowsky M. J., Elis L. b. M., Que L. Jr, Wackett L. P. 1995; A manganese-dependent dioxygenase from Arthrobacter globiformis CM-2 belongs to the major extradiol dioxygenase family. J Bacteriol 177:1225–1232
    [Google Scholar]
  9. Cerniglia C. E. 1992; Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368
    [Google Scholar]
  10. Dagley S. 1975; A biochemical approach to some problems of environmental pollution. Essays Biochem 11:81–138
    [Google Scholar]
  11. Eaton R. W. 1996; p-Cumate catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA carrying the cmt operon. J Bacteriol 178:1351–1362
    [Google Scholar]
  12. Furukawa K. 1994; Molecular genetics and evolutionary relationship of PCB-degrading bacteria. Biodegradation 5:289–300
    [Google Scholar]
  13. Gibello A., Ferrer E., Martin M., Garrido-Pertierra A. 1994; 3,4-Dihydroxyphenylacetate 2,3-dioxygenase from Klebsiella pneumoniae, a Mg2+-containing dioxygenase involved in aromatic catabolism. Biochem J 301:145–150
    [Google Scholar]
  14. Harayama S., Rekik M. 1989; Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. J Biol Chem 264:15328–15333
    [Google Scholar]
  15. Harayama S., Timmis K. 1992; Aerobic biodegradation of aromatic hydrocarbons by bacteria. In Metal Ions in Biological Systems, pp. Edited by H. Sigel & A. Sigel. New York: Marcel Dekker Inc.. 28:99–156
    [Google Scholar]
  16. Harayama S., Rekik M., Wasserfallen A., Bairoch A. 1987; Evolutionary relationships between catabolic pathways for aromatics: conservation of gene order and nucleotide sequences of catechol oxidation genes of pWW0 and NAH7 plasmids. Mol Gen Genet 210:241–247
    [Google Scholar]
  17. Harayama S., Kok M., Neidle E. L. 1992; Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol 46:565–601
    [Google Scholar]
  18. Hayase N., Taira K., Furukawa K. 1990; Pseudomonas putida KF715 bphABCD operon encoding biphenyl and polychlorinated biphenyl degradation: cloning, analysis and expression in soil bacteria. J Bacteriol 172:1160–1164
    [Google Scholar]
  19. Heiss G., Stolz A., Kuhm A. E., Müller C., Klein J., Altenbuchner J., Knackmuss H.-J. 1995; Characterization of a 2,3-dihydroxybiphenyl dioxygenase from the naphthalenesulfonate-degrading bacterium strain BN6. J Bacteriol 177:5865–5871
    [Google Scholar]
  20. Hofer B., Eltis L. D., Dowling D. N., Timmis K. N. 1993; Genetic analysis of a Pseudomonas locus encoding a pathway for biphenyl/polychlorinated biphenyl degradation. Gene 130:47–55
    [Google Scholar]
  21. Kabisch M., Fortnagel P. 1990a; Nucleotide sequence of metapyrocatechase I (catechol 2,3-oxygenase I) gene mpcI from Alcaligenes eutrophus JMP 222. Nucleic Acids Res 18:3405–3406
    [Google Scholar]
  22. Kabisch M., Fortnagel P. 1990b; Nucleotide sequence of metapyrocatechase II (catechol 2,3-oxygenase II) gene mpcII from Alcaligenes eutrophus JMP 222. Nucleic Acids Res 18:5543
    [Google Scholar]
  23. Kimbara K., Hashimoto T., Fukuda M., Koana T., Tagaki M., Oishi M., Yano K. 1989; Cloning and sequencing of two tandem genes involved in degradation of 2,3-dihydroxybiphenyl to benzoic acid in the polychlorinated biphenyl-degrading soil bacterium Pseudomonas sp. strain KKS102. J Bacteriol 171:2740–2747
    [Google Scholar]
  24. Klečka G. M., Gibson D. T. 1981; Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-chlorocatechol. Appl Environ Microbiol 41:1159–1165
    [Google Scholar]
  25. Kuhm A. E., Stolz A., Ngai K.-L., Knackmuss H.-J. 1991; Purification and characterization of a 1,2-dihydroxynaphthalene dioxygenase from a bacterium that degrades naphthalenesulfonic acids. J Bacteriol 173:3795–3802
    [Google Scholar]
  26. Kuhm A. E., Knackmuss H.-J., Stolz A. 1993; Purification and properties of 2′-hydroxybenzalpyruvate aldolase from a bacterium that degrades naphthalenesulfonates. J Biol Chem 268:9484–9489
    [Google Scholar]
  27. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  28. Maeda M., Chung S.-Y., Song E., Kudo T. 1995; Multiple genes encoding 2,3-dihydroxybiphenyl 1,2-dioxygenase in the Gram-positive polychlorinated biphenyl-degrading bacterium Rhodococcus erythropolis TA421, isolated from a termite ecosystem. Appl Environ Microbiol 61:549–555
    [Google Scholar]
  29. Nakai C., Kagamiyama H., Nozaki M., Nagasawa T., Inouye S., Ebina Y., Nakazawa A. 1983; Complete nucleotide sequence of the metapyrocatechase gene on the TOL plasmid of Pseudomonas putida mt-2. J Biol Chem 258:2923–2928
    [Google Scholar]
  30. Noda Y., Nishikawa S., Shiozuka K.-I., Kadokura H., Kakajima H., Yoda K., Katayama Y., Morohoshi N., Haraguchi T., Yamasaki M. 1990; Molecular cloning of the protocatechuate 4,5-dioxygenase genes of Pseudomonas paucimobilis. J Bacteriol 172:2704–2709
    [Google Scholar]
  31. Nörtemann B., Baumgarten J., Rast H. G., Knackmuss H.-J. 1986; Bacterial communities degrading amino- and hydroxynaphthalene-2-sulfonates. Appl Environ Microbiol 52:1195–1201
    [Google Scholar]
  32. Nörtemann B., Kuhm A. E., Knackmuss H.-J., Stolz A. 1994; Conversion of substituted naphthalenesulfonates by Pseudomonas sp. BN6. Arch Microbiol 161:320–327
    [Google Scholar]
  33. Patel T. R., Barnsley E. A. 1980; Naphthalene metabolism by pseudomonads: purification and properties of 1,2-dihydroxynaphthalene oxygenase. J Bacteriol 143:668–673
    [Google Scholar]
  34. Pieper D. H., Reineke W., Engesser K.-H., Knackmuss H.-J. 1988; Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP 134. Arch Microbiol 150:95–102
    [Google Scholar]
  35. Que L. Jr, Widom J., Crawford R. L. 1981; 3,CDihydroxyphenylacetate 2,3-dioxygenase. A manganese(II) dioxygenase from Bacillus brevis. J Biol Chem 256:10941–10944
    [Google Scholar]
  36. Roper D. I., Cooper R. A. 1990; Subcloning and nucleotide sequence of the 3,4-dihydroxyphenylacetate (homoprotocatechuate) 2,3-dioxygenase gene from Escherichia coli C. FEBS Lett 275:53–57
    [Google Scholar]
  37. Roper D. I., Cooper R. A. 1993; Purification, nucleotide sequence and some properties of a bifunctional isomerase/decarboxylase from the homoprotocatechuate degradative pathway of Escherichia coli C. Eur J Biochem 217:575–580
    [Google Scholar]
  38. Saeki Y., Nozaki M., Senoh S. 1980; Cleavage of pyrogallol by non-heme iron containing dioxygenases. J Biol Chem 255:8465–8471
    [Google Scholar]
  39. Scopes R. K. 1982; Protein Purification. New York: Springer-Verlag..
    [Google Scholar]
  40. Shingler V., Powlowski J., Marklund U. 1992; Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J Bacteriol 174:711–724
    [Google Scholar]
  41. Taira K., Hayase N., Arimura N., Yamashita S., Miyazaki T., Furukawa K. 1988; Cloning and nucleotide sequence of the 2,3-dihydroxybiphenyl dioxygenase from the PCB-degrading strain of Pseudomonas paucimobilis Q1. Biochemistry 27:3990–3996
    [Google Scholar]
  42. Wasserfallen A., Rekik M., Harayama D. 1991; A Pseudomonas putida strain able to degrade m-toluate in the presence of 3-chlorocatechol. Bio/Technology 9:296–298
    [Google Scholar]
  43. Zylstra G. J., Gibson D. T. 1989; Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2-BADE genes and their expression in Escherichia coli. J Biol Chem 264:14940–14946
    [Google Scholar]
/content/journal/micro/10.1099/00221287-143-5-1691
Loading
/content/journal/micro/10.1099/00221287-143-5-1691
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error