1887

Abstract

A cluster of flagellar genes of was identified and sequenced. This cluster comprises an operon, designated the flgK operon, which is initiated by a s-like promoter. The operon consists of (function unknown), (encoding HAP1), (encoding HAP3) and (function unknown), and maps at 185 kb on the chromosome. In other bacteria, the hook-associated proteins HAP1 and HAP3 connect the flagellar filament to the hook and are required for the last stage of flagellar assembly. Reverse transcriptase-PCR analysis indicated that through to are transcribed as a single mRNA, and primer extension analysis revealed that transcription of the operon is initiated by a s-like promoter upstream of Subcloning the flgK promoter element into a promoter probe cat vector revealed that the promoter element had strong activity in both and . In addition, when this construct was transformed into a mutant of which lacked a functional flagellar-specific sfactor, the promoter was still functional. Based on these results, the promoter element of the flagellin gene ( hereafter referred to as ) was re-examined. encodes the flagellar filament protein, and a s-like promoter has been reported to be involved in the transcription of this gene. A transcriptional start point was found 1 bp downstream of the reported start site. The sequence around -10 and -35 are consistent with the presence of a s-like promoter in addition to the putative s-like promoter for In contrast to the promoter element, no activity was detected after subcloning a promoter element into the promoter probe Because a s-like promoter rather than a unique flagellar sigma factor is involved in the later stage of flagellar assembly, the regulation of flagellar genes is evidently different from that of other bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-5-1681
1997-05-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/5/mic-143-5-1681.html?itemId=/content/journal/micro/10.1099/00221287-143-5-1681&mimeType=html&fmt=ahah

References

  1. Aizawa S. I. 1996; Flagellar assembly in Salmonella typhirnurium. Mol Microbiol 19:1–5.
    [Google Scholar]
  2. Anderson D. K., Ohta N., Wu J., Newton A. 1995; Regulation of the Caulobacter crescentus rpoN gene and function of the purified σ54 in flagellar gene transcription. Mol Gen Genet 246:697–706.
    [Google Scholar]
  3. Armitage J. P. 1992; Behavioral responses in bacteria. Annu Rev Physiol 54:683–714.
    [Google Scholar]
  4. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman G. G., Smith J. A., Struhl K. 1995; Current Protocols in Molecular Biology. New York: Wiley.
    [Google Scholar]
  5. Barbour A. G. 1984; Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57:521–525
    [Google Scholar]
  6. Brosius J. 1984; Plasmid vectors for the selection of promoters. Gene 27:151–160
    [Google Scholar]
  7. Canale-Parola E. 1978; Motility and chemotaxis of spirochetes. Annu Rev Microbiol 32:69–99
    [Google Scholar]
  8. Champion C. I., Miller J. N., Lovett M. A., Blanco D. R. 1990; Cloning, sequencing, and expression of two class B endoflagellar genes of Treponema pallidurn subsp. pallidum encoding the 34⋅5- and 31⋅0-kilodalton proteins. Infect Immun 58:1697–1704
    [Google Scholar]
  9. Charon N. W., Greenberg E. P., Koopman M. B. H., Limberger R. J. 1992; Spirochete chemotaxis, motility, and the structure of the spirochetal periplasmic flagella. Res Microbiol 143:597–603
    [Google Scholar]
  10. Fredrick K. L., Helmann J. D. 1994; Dual chemotaxis signaling pathways in Bacillus subtilis: a σD-dependent gene encodes a novel protein with both Chew and CheY homologous domains. J Bacteriol 176:2727–2735
    [Google Scholar]
  11. Fredrick K., Caramori T., Chen Y.-F, Galizzi A., Helmann J. D. 1995; Promoter architecture in the flagellar regulon of Bacillus subtilis: high-level expression of flagellin by the σD RNA polymerase requires an upstream promoter element. Proc Nat1 Acad Sci USA 92:2582–2586
    [Google Scholar]
  12. Gassmann G. S., Jacobs E., Deutzmann R., Gobel U. B. 1991; Analysis of the Borrelia burgdorferi GeHo fla gene and antigenic characterization of its gene product. J Bacteriol 173:1452–1459
    [Google Scholar]
  13. Ge Y. G., Old I., Saint Girons I., Yelton D. B., Charon N. W. 1996; FliH and FliI of Borrelia burgdorferi are similar to flagellar and virulence factor export proteins of other bacteria. Gene 168:73–75
    [Google Scholar]
  14. Ge Y., Charon N. W. 1997; An unexpected flaA homolog is present and expressed in Borrelia burgdorferi. J. Bacteriol 179:552–556
    [Google Scholar]
  15. Goldstein S. F., Charon N. W., Kreiling J. A. 1994; Borrelia burgdorferi swims with a planar waveform similar to that of eukaryotic flagella. Proc Natl Acad Sci USA 91:3433–3437
    [Google Scholar]
  16. Goldstein S. F., Buttle K. F., Charon N. W. 1996; Structural analysis of Leptospiraceae and Borrelia burgdorferi using high voltage electron microscopy. J Bacteriol 178:6539–6545
    [Google Scholar]
  17. Gralla J. D, Collado-Vides J. 1996; Organization and function of transcription regulatory elements. In Escherichia coli and Salmonella: Cellular and Molecular Biology, Edited by F. C. Neidhardt and others. Washington, DC:. American Society for Microbiology.1232–1245
    [Google Scholar]
  18. Hardham J. M., Frye J. G., Stamm L. V. 1995; Identification and sequences of the Treponema pallidum fliM’, fliY’, fliQ’, fliR’, and flhB’. Gene 166:57–64
    [Google Scholar]
  19. Harley C. B., Reynolds R. P. 1987; Analysis of E. coli promoter sequences. Nucleic Acids Res 15:2343–2361
    [Google Scholar]
  20. Helmann J. D. 1991; Alternative sigma factors and the regulation of flagellar gene expression. Mol Microbiol 5:2875–2882
    [Google Scholar]
  21. Homma M., lino T. 1985; Locations of hook-associated proteins in flagellar structures of Salmonella typhimurium. J Bacteriol 162:183–189
    [Google Scholar]
  22. Homma M., Kutsukake K., lino T., Yamaguchi S. 1984; Hook-associated proteins essential for flagellar filament formation in Salmonella typhimurium. J Bacteriol 157:100–108
    [Google Scholar]
  23. Hovind-Hougen K. 1984; Ultrastructure of spirochetes isolated from Ixodes ricinus and Ixodes dammini. Yale J Biol Med 57:543–548
    [Google Scholar]
  24. Hughes K. T., Gillen K. L., Semon M. J., Karlinsey J. E. 1953; Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262:1277–1280
    [Google Scholar]
  25. Isaacs R. D., RadOlf J. D. 1990; Expression in Escherichia coli of the 37-kilodalton endoflagellar sheath protein of Treponema pallidum by use of the polymerase chain reaction and a T7 expression system. Infect Immun 58:2025–2034
    [Google Scholar]
  26. Ishihama I. 1992; Role of RNA polymerase α subunit in transcriptional activation. Mol Microbiol 6:3283–3288
    [Google Scholar]
  27. Iyoda S., Kutsukake K. 1995; Molecular dissection of the flagellum specific anti-sigma factor, FlgM, of Salmonella typhimurium. Mol Gen Genet 249:417–424
    [Google Scholar]
  28. Johnson R. C., Schmid G. P., Hyde F. W., Steigerwalt A. G., Brenner D. J. 1984; Borrelia burgdorferi sp. nov.: etiological agent of Lyme disease. Int J Syst Bacteriol 34:496–497
    [Google Scholar]
  29. Jones C. J., Macnab R. M. 1990; Flagellar assembly in Salmonella typhimurium: analysis with temperature-sensitive mutants. J Bacteriol 172:1327–1339
    [Google Scholar]
  30. Kimsey R. B., Spielman A. 1990; Motility of Lyme disease spirochetes in fluids as viscous as the extracellular matrix. J Infect Dis 162:1205–1208
    [Google Scholar]
  31. Koopman M. B. H., de Lee O. S., van der Zieijst B. A. M., Kuster J. G. 1992; Cloning and DNA sequence analysis of a Serpulina (Treponema) hyodysenteriae gene encoding a periplasmic flagellar sheath protein. Infect Immun 60:2920–2925
    [Google Scholar]
  32. Koopman M. B. H., Baats E., de Leeuw O. S., van der Zeijst B. A. M., Kusters J. G. 1993; Molecular analysis of a flagellar core protein gene of Serpulina (Treponema) hyodysenteriae. J Gen Microbiol 139:1701–1706
    [Google Scholar]
  33. Kreiling J. A. 1995; Characterization of the periplasmic flagella of Borrelia burgdorferi. . PhD dissertation, West Virginia University.
    [Google Scholar]
  34. Kutsukake K., Ide N. 1995; Transcriptional analysis of the flgK and fliD operons of Salmonella typhimurium which encode flagellar hook-associated proteins. Mol Gen Genet 247:275–281
    [Google Scholar]
  35. Limberger R. J., Slivienski L. L., Yelton D. B., Charon N. W. 1992; Molecular genetic analysis of a class B periplasmic flagellum gene of Treponema phagedenis. J Bacteriol 174:6404–6410
    [Google Scholar]
  36. Limberger R. J., Slivienski L. L., El-Afandi M. C. T., Dantuono L. A. 1996; Organization, transcription, and expression of the 5’ region of the fla operon of Treponema phagedenis and Treponema pallidum. J Bacteriol 178:4628–4634
    [Google Scholar]
  37. McCarter L. L. 1995; Genetic and molecular characterization of the polar flagellum of Vibrio parahuemolyticus. J Bacteriol 177:1595–1609
    [Google Scholar]
  38. Macnab R. M. 1996; Flagella and motility. In Escherichia coli and Salmonella: Cellular and Molecular Biology, Edited by F. C. Neidhardt and others. Washington, DC:. American Society for Microbiology.1232–1245
    [Google Scholar]
  39. Magnarelli L. A., Fikrig E., Padula S. J., Anderson J. F., Flavell R. A. 1996; Use of recombinant antigens of Borrelia burgdorferi in serologic tests for diagnosis of Lyme borreliosis. J Clin Microbiol 34:237–240
    [Google Scholar]
  40. Marquez-Magana L. M., Chamberlin M. J. 1994; Characterization of the sigD transcription unit of Bacillus subtilis. J Bacteriol 176:2427–2434
    [Google Scholar]
  41. Mirel D. B., Lustre V. M., Chamberlin M. V. 1992; An operon of Bacillus subtilis motility genes transcribed by the σD form of RNA-polymerase. J Bacteriol 174:4197–4204
    [Google Scholar]
  42. Mirel D. B., Lauer P., Chamberlin M. J. 1994; Identification of flagellar synthesis regulatory and structural genes in σD-dependent operon of Bacillus subtilis. J Bacteriol 176:4492–4500
    [Google Scholar]
  43. Mohr C. D., Jenal U., Shapiro L. 1996; Flagellar assembly in Caulobacter crescentus: a basal body P-ring null mutation affects stability of the L-ring protein. J Bacteriol 178:675–682
    [Google Scholar]
  44. Noppa L., Burman N., Sadziene A., Barbour A. G., Bergstrðm S. 1995; Expression of the flagellin gene in Borrelia is controlled by an alternative σ factor. Microbiology 141:85–93
    [Google Scholar]
  45. Pallesen L., Hindersson P. 1989; Cloning and sequencing of a Treponema pallidum gene encoding a 31.3 kilodalton endoflagellar subunit (FlaB2). Infect Immun 57:2166–2172
    [Google Scholar]
  46. Parales J., Greenberg E. P. 1993; Analysis of the Spirochaeta aurantia flaA gene and transcript. FEMS Microbiol Lett 106:245–251
    [Google Scholar]
  47. Parker J. D., Rabinovitch P. S., Burmer G. C. 1991; Targeted gene walking polymerase chain reaction. Nucleic Acids Res 19:3055–3060
    [Google Scholar]
  48. Quon K. C., Marczynski T., Shapiro L. 1996; Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84:83–93
    [Google Scholar]
  49. Ramakrishnan G., Zhao J.-L., Newton A. 1994; Multiple structural proteins are required for both transcriptional activation and negative autoregulation of Caulobacter crescentus flagellar genes. J Bacteriol 176:7587–7600
    [Google Scholar]
  50. Sadziene A., Thomas D. D., Bundoc V. G., Holt S. C., Barbour A. G. 1991; A flagella-less mutant of Borrelia burgdorferi. Structural, molecular, and in vitro characterization. J Clin Invest 88:82–92
    [Google Scholar]
  51. Saint-Girons I., Old I. G., Davidson B. E. 1994; Molecular biology of the Borrelia, bacteria with linear replicons. Microbiology 140:1803–1816
    [Google Scholar]
  52. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY:. Cold Spring Laboratory.
    [Google Scholar]
  53. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  54. Tsai C. P., Pan M. J. 1996; Sequence of a gene encoding a putative primary sigma factor from Borrelia burgdorferi strain B31. Gene 168:123–124
    [Google Scholar]
  55. Wallich R., Moter S. E., Simon M. M., Ebnet K., Heiberger A., Kramer M. D. 1990; The Borrelia burgdorferi flagellum-associated 41-kilodalton antigen (flagellin): molecular cloning, expression, and amplification of the gene. Infect Immun 58:1711–1719
    [Google Scholar]
  56. Wu J., Benson A. K., Newton A. 1995; Global regulation of a σ54-dependent flagellar gene family in Caulobacter crescentus by the transcriptional activator FlbD. J Bacteriol 177:3241–3250
    [Google Scholar]
  57. Zhuang W. Y., Shapiro L. 1995; Caulobacter FliQ and FliR membrane proteins, required for flagellar biogenesis and cell division, belong to a family of virulence factor export proteins. J Bacteriol 177:343–356
    [Google Scholar]
  58. Zuberi A. R., Ying C., Bischoff D. S., Ordal G. W. 1991; Gene-protein relationships in the flagellar hook-basal body complex of Bacillus subtilis: sequences of the flgB,flgC,flgG, fliE,fliF genes. Gene 101:23–31
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-5-1681
Loading
/content/journal/micro/10.1099/00221287-143-5-1681
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error