1887

Abstract

This work reports the role of both superoxide dismutases - CuZnSOD (encoded by ) and MnSOD (encoded by ) - in the build-up of tolerance to ethanol during growth of from exponential to post-diauxic phase. Both enzyme activities increase from the exponential phase to the diauxic shift and from the diauxic shift to the post-diauxic phase. The levels of mRNA- and mRNA- increase from the exponential phase to the diauxic shift; however, during the post-diauxic phase mRNA- levels decrease while mRNA- levels remain unchanged. These data indicate the existence of two regulatory mechanisms involved in the induction of SOD activity during growth: synthesis of the proteins (until the diauxic shift), and post-transcriptional or post-translational regulation (during the post-diauxic phase). Ethanol does not alter the activities of either enzyme in cells from the diauxic shift or post-diauxic phases, although the respective mRNA levels decrease in post-diauxic-phase cells treated with ethanol (14% or 20%). Results of experiments with and mutants show that MnSOD, but not CuZnSOD, is essential for ethanol tolerance of diauxic-shift and post-diauxic-phase cells. Evidence that ethanol toxicity is correlated with the production of reactive oxygen species in the mitochondria is obtained from results with respiration-deficient mutants. In these cells, the induction of superoxide dismutase activity by ethanol is low; also, the respiratory deficiency restores the capacity of cells to acquire ethanol tolerance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-5-1649
1997-05-01
2021-10-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/5/mic-143-5-1649.html?itemId=/content/journal/micro/10.1099/00221287-143-5-1649&mimeType=html&fmt=ahah

References

  1. Aguilera A., Benitez W. 1985; Role of mitochondria in ethanol tolerance of Saccharomyces cerevisiae. Arch Microbiol 142:389–392
    [Google Scholar]
  2. Bandas E.L., Zakharov I.A. 1980; Induction of rho- mutations in yeast Saccharomyces cerevisiae by ethanol. Mutat Res 71:193–199
    [Google Scholar]
  3. Beaven M. J., Charpentier C., Rose A. H. 1982; Production and tolerance of ethanol in relation to phospholipid fatty acyl composition in Saccharomyces cerevisiae NCYC 431. J Gen Microbiol 128:1447–1445
    [Google Scholar]
  4. Belazzi T., Wagner A., Wieser R., Schanz M., Adam G., Hartig A., Ruis H. 1991; Negative regulation of transcription of the Saccharomyces cerevisiae catalase T (CTT1) gene by cAMP is mediated by a positive control element. EMBO J 10:585–592
    [Google Scholar]
  5. Bermingham-McDonog O., Gralla E. B., Valentine J.S. 1988; The copper, zinc-superoxide dismutase gene of Saccharomyces cerevisiae : cloning, sequencing and biological activity. Proc Nat1 Acad Sci USA 85:4789–4793
    [Google Scholar]
  6. Bilinski T., Krawiek Z., Liczmanski A., Litwinska J. 1985; Is hydroxyl radical generated by the Fenton reaction in vivo ? . Biochem Biophys Res Commun 130:533–539
    [Google Scholar]
  7. Brevario D., Hinnebusch A. G., Dhar R. 1988; Multiple regulatory mechanisms control the expression of the RAS1 and RAS2 genes of Saccharomyces cerevisiae. EMBO J 7:1805–1813
    [Google Scholar]
  8. Brown A. J. P. 1994; Measurement of mRNA stability. In Molecular Genetics of Yeast: a Practical Approach, pp. Edited by J. R. Johnston. Oxford: Oxford University Press.147–159
    [Google Scholar]
  9. Casey G.P., Ingledew W. M. 1986; Ethanol tolerance in yeasts. Crit Rev Microbiol 13:219–280
    [Google Scholar]
  10. Costa V., Reis E., Quintanilha A., Moradas-Ferreir P. 1993; Acquisition of ethanol tolerance in Saccharomyces cerevisiae : the key role of the mitochondrial superoxide dismutase. Arch Biochem Biophys 300:608–614
    [Google Scholar]
  11. Del Castillo Agudo L. 1992; Lipid content of Saccharomyces cerevisiae strains with different degrees of ethanol tolerance. Appl Micro biol Biotecbnol 37:647–651
    [Google Scholar]
  12. Flohé L., Otting F. 1984; Superoxide dismutase assays. Methods Enzymol 105:93–104
    [Google Scholar]
  13. Galiazzo F., Labbe-Bois R. 1993; Regulation of Cu,Zn- and Mn-superoxide dismutase transcription in Saccharomyces cerevisiae. FEBS Lett 315:197–200
    [Google Scholar]
  14. Galiazzo F., Ciriolo M. R., Carri M. T., Civitareale P., Marcocci L., Marmocchi F., Rotilio F. 1991; Activation and induction by copper of Cu/Zn superoxide dismutase in Saccharomyces cerevisiae: presence of an inactive proenzyme in anaerobic yeast. Eur J Biochem 196:545–549
    [Google Scholar]
  15. Gallwitz D., Sures I. 1980; Structure of a split yeast gene: complete nucleotide sequence of the actin gene in Saccharomyces cerevisiae. . Proc Natl Acad Sci USA 77:2456–2550
    [Google Scholar]
  16. Halliwell B., Gutteridge J. M. C. 1989; Free Radicals in Biology and Medicine. Oxford : Clarendon Press.
    [Google Scholar]
  17. Jamieson D.J. 1992; Saccharomyces cerevisiae has distinct adaptative responses to both hydrogen peroxide and menadione. J Bacteriol 174:6678–6681
    [Google Scholar]
  18. Jigami Y., Toshimitsu N., Fujisawa H., Uemura H., Tanaka H., Nakasato S. 1986; Analysis of expression of yeast enolase 1 gene containing a longer pyrimidine-rich region located between the TATA box and transcription start site. J Biochem 99:1111–1125
    [Google Scholar]
  19. van Loon A. P. G. M., Pesold-Hurt B., Schatz G. 1986; A yeast mutant lacking mitochondrial manganese superoxide dismutase is hypersensitive to oxygen. Proc Nat1 Acad Sci USA 83:3820–3824
    [Google Scholar]
  20. Marres C. A. M., van Loon A. P. G. M., Oudshoorn P., van Steeg H., Grivell L. A., Slater E. C. 1985; Nucleotide sequence analysis of the nuclear gene coding for manganese superoxide dismutase of yeast mitochondria, a gene previously assumed to code for the Rieske iron-sulphur protein. Eur J Biochem 147:153–161
    [Google Scholar]
  21. Moradas-Ferreira P., Costa V., Piper P., Mager W. 1996; The molecular defences against reactive oxygen species in yeast. Mol Microbiol 19:651–658
    [Google Scholar]
  22. Odumeru J. A., Damore T., Russell I., Stewart G. G. 1993; Alterations in fatty-acid composition and trehalose concentration of Saccharomyces brewing strains in response to heat and ethanol shock. J Ind Microbiol 11:113–119
    [Google Scholar]
  23. Panaretou B., Piper P. 1990; Plasma-membrane ATPase action affects several stress tolerances of Saccharomyces cerevisiae and Schizosaccharomyces pombe as well as the extent and duration of the heat shock response. J Gen Microbiol 136:1763–1770
    [Google Scholar]
  24. Panaretou B., Piper P. 1992; The plasma membrane of yeast acquires a novel heat-shock protein (hsp30) and displays a decline in proton-pumping ATPase levels in response to both heat shock and entry to post-diauxic phase. Eur J Biochem 206:635–640
    [Google Scholar]
  25. Piper P.W. 1995; The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134:121–127
    [Google Scholar]
  26. Plesset J., Palm C., Mclaughlin C.S. 1982; Induction of heat shock proteins and thermotolerance by ethanol in Saccharomyces cerevisiae. . Biochem Biophys Res Commun 108:1340–1345
    [Google Scholar]
  27. Rosa M. F., Sá-Correia I. 1996; Intracellular acidification does not account for inhibition of Saccharomyces cerevisiae growth in the presence of ethanol. FEMS Microbiol Lett 135:271–274
    [Google Scholar]
  28. Rossi L., Ciriolo E., Demartino A., Giorgi M., Rotilio G. 1994; Differential decrease of copper content and of copper-binding to superoxide-dismutase in liver, heart and brain of copper-deficient rats. Biochem Biophys Res Commun 203:1028–1034
    [Google Scholar]
  29. Rymond B. C., Zitomer R. S., Schumperli D., Rosenberg M. 1983; The expression in yeast of the Escherichia coli GALK gene on CYC1-GALK fusion plasmids. Gene 25:249–262
    [Google Scholar]
  30. Sá-Correia I., van Uden N. 1986; Ethanol-induced death of Saccharomyces cerevisiae at low and intermediate growth temperatures. Biotechnol Bioeng 27:301–303
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor,. NY: Cold Spring Harbor Laboratory.
    [Google Scholar]
  32. Sanchez Y., Taulien J., Borkovich K. M., Lindquist S. 1992; Hspl04 is required for tolerance to many forms of stress. EMBO J 11:2357–2364
    [Google Scholar]
  33. Schuller C., Brewster J.L., Alexander M. R., Gustin M. C., Ruis H. 1994; The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of Saccharomyces cerevisiae CTT1 gene. EMBO J 13:4382–4389
    [Google Scholar]
  34. Spevak W., Fessel F., Rytka J., Traczyk A., Skoneczny M., Ruis H. 1983; Isolation of the catalase T structural gene of Saccharomyces cerevisiae by functional complementation. Mol Cell Biol 3:1545–1551
    [Google Scholar]
  35. van Uden N. 1984; Effects of ethanol on the temperature relations of viability and growth in yeasts. Crit Rev Biotechnol 1:263–272
    [Google Scholar]
  36. Watson K., Cavicchioli R. 1983; Acquisition of ethanol tolerance in yeast cells by heat shock. Biotechnol Lett 5:683–688
    [Google Scholar]
  37. Werner-Washburne M., Brown D., Braun E. 1991; Bcy1, the regulatory subunit of cAMP-dependent protein kinase in yeast, is differentially modified in response to the physiological status of the cells. J Biol Chem 266:19704–19709
    [Google Scholar]
  38. Werner-Washburne M., Braun E., Johnston G. C., Singer R. A. 1993; Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev 57:383–401
    [Google Scholar]
  39. Wieser R., Adam G., Wagner A., Schuller C., Marchler G., Ruis H., Krawiek Z., Bilinski T. 1991; Heat shock-factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase T of Saccharomyces cerevisiae. J Biol Chem 266:12406–12411
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-5-1649
Loading
/content/journal/micro/10.1099/00221287-143-5-1649
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error