1887

Abstract

The formation of phosphoenolpyruvate (PEP) is a major step in the gluconeogenic pathway in which tricarboxylic acid (TCA) cycle intermediates are converted to hexose sugars. In (now this step is catalysed by the enzyme PEP carboxykinase (PCK) which converts oxaloacetate to PEP. Pckmutants grow very poorly with TCA cycle intermediates as the sole source of carbon. Here, the isolation and mapping of suppressor mutations which allow Pckmutants to grow on succinate and other TCA cycle intermediates is reported. Tn insertions which abolished the suppressor phenotype and mapped to the suppressor locus were located within the pod gene encoding pyruvate orthophosphate dikinase (PPDK). Strains carrying suppressor mutations had increased PPDK activity compared to the wild-type. The suppressor phenotype was dependent on the combined activities of malic enzyme and PPDK, which thus represent an alternative route for the formation of PEP in PPDK activity was not required for symbiotic N fixation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-5-1639
1997-05-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/5/mic-143-5-1639.html?itemId=/content/journal/micro/10.1099/00221287-143-5-1639&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Meyers E. W., Lipman D. J. 1990; Basic local alignment research tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Benziman M., Eizen N. 1971; Pyruvate-phosphate dikinase and the control of gluconeogenesis in Acetobacter xylinurn. . J Biol Chem 246:57–61
    [Google Scholar]
  3. Benziman M., Palgi A. 1970; Characterization and properties of the pyruvate phosphorylation system ofAcetobacter xylinurn. . J Bacteriol 104:211–218
    [Google Scholar]
  4. Beringer J. E., Beynon J. L., Buchanan-Wollaston A. V., Johnston A. W. B. 1978; Transfer of the drug resistance transposon Tn5 to Rhizobium . Nature 276:633–634
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  6. Bruchhaus I., Tannich E. 1993; Primary structure of the pyruvate phosphate dikinase in Entamoeba histolytica . Mol Biochem Parasito 62:153–156
    [Google Scholar]
  7. Buchanan B. B. 1974; Orthophosphate requirement for the formation of phosphoenolpyruvate from pyruvate by enzyme preparations from photosynthetic bacteria. J Bacteriol 119:1066–1068
    [Google Scholar]
  8. Cooper R. A, Kornberg H. L. 1967; The direct synthesis of phosphoenolpyruvate from pyruvate by Escherichia coli . Proc R SOC London B Biol Sci 168:263–280
    [Google Scholar]
  9. Driscoll B. T., Finan T. M. 1993; NAD+-dependent malic enzyme of Rhizobium meliloti is required for symbiotic nitrogen fixation. Mol Microbiol 7:865–873
    [Google Scholar]
  10. Driscoll B. T., Finan T. M. 1996; NADP+-dependent malic enzyme of Rhizobium meliloti . J Bacteriol 178:2224–2231
    [Google Scholar]
  11. Edwards G. E., Nakamoto H., Burnell J. N., Hatch M. D. 1985; Pyruvate, Pi dikinase and NADP-malate dehydrogenase in C4 photosynthesis : properties and mechanism of light/dark regulation. Annu Rev Plant Physiol 36:255–286
    [Google Scholar]
  12. Englard S., Seigal L. 1969; Mitochondria1 L-malate dehydrogenase of beef heart. Methods Enzymol 13:99–106
    [Google Scholar]
  13. Ernst S. M., Budde R. J. A, Chollet R. 1986; Partial purification and characterization of pyruvate, orthophosphate dikinase from Rhodospirillum rubrum. . J Bacteriol 165:483–488
    [Google Scholar]
  14. Evans H. J., Wood H. G. 1968; The mechanism of the pyruvate, phosphate dikinase reaction. Proc Nat1 Acad Sci USA 61:1448–1453
    [Google Scholar]
  15. Evans H. J., Wood H. G. 1971; Purification and properties of pyruvate phosphate dikinase from propionic acid bacteria. Biochemistry 10:721–728
    [Google Scholar]
  16. Finan T. M., Hartwieg E. K., Lemieux K., Bergman K., Walker G. C., Signer E. R. 1984; General transduction in Rhizobium meliloti. J Bacteriol 159:120–124
    [Google Scholar]
  17. Finan T. M., Kunkel B., DeVos G. F., Signer E. R. 1986; Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167:66–72
    [Google Scholar]
  18. Finan T. M., Oresnik I., Bottacin A. 1988; Mutants of Rhizobium meliloti defective in succinate metabolism. J Bacteriol 170:3396–3403
    [Google Scholar]
  19. Furuichi T., Inouye M, Inouye S. 1985; Novel one-step cloning vector with a transposable element : application to the Myxococcus xanthus genome. J Bacteriol 164:270–275
    [Google Scholar]
  20. Goldie A. H., Sanwal B. D. 1980; Genetic and physiological characterization of Escherichia coli mutants deficient in phosphoenolpyruvate carboxykinase activity. J Bacteriol 141:1115–1121
    [Google Scholar]
  21. Hansen E. J., Juni E. 1974; Two routes for synthesis of phosphoenolpyruvate from C4-dicarboxylic acids in Escherichia coli. . Biochem Biophys Res Commun 59:1204–1210
    [Google Scholar]
  22. Hansen E. J., Juni E. 1975; Isolation of mutants of Escherichia coli lacking NAD- and NADP-linked malic enzyme activities. Biochem Biophys Res Commun 65:559–566
    [Google Scholar]
  23. Hansen R. J., Hinze H., Holzer H. 1976; Assay of phosphoenolpyruvate carboxykinase in crude yeast extracts. Anal Biochem 74:576–584
    [Google Scholar]
  24. Hatch M. D., Slack C. R. 1968; A new enzyme for the interconversion of pyruvate and phosphopyruvate and its role in the C4 dicarboxylic acid pathway of photosynthesis. Biochem J 106:141–146
    [Google Scholar]
  25. Higgins D. G., Bleasby A. J., Fuchs R. 1992; CLUSTALV: improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191
    [Google Scholar]
  26. Jones C. E., Fleming T. M., Piper P. W., Littlechild J. A., Cowan D. A. 1995; Cloning and sequencing of a gene from the archeon Pyrococcus furiosus with high homology to a gene encoding phosphoenolpyruvate synthetase from Escherichia coli. . Gene 160:101–103
    [Google Scholar]
  27. Jones J. D. G., Gutterson N. 1987; An efficient mobilizable cosmid vector, pRK7813, and its use in a rapid method for marker exchange in Pseudomonas fluorescens strain HV37a. Gene 61:299–306
    [Google Scholar]
  28. Klein S., Lohman K., Clover R., Walker G. C., Signer E. R. 1992; A directional, high-frequency chromosomal mobilization system for genetic mapping of Rhizobium meliloti . J Bacteriol 174:324–326
    [Google Scholar]
  29. McKay I. A., Glenn A. R., Dilworth M. J. 1985; Gluconeogenesis in Rhizobium leguminosarum MNF3841. J Gen Microbiol 131:2067–2073
    [Google Scholar]
  30. Matsuoka M. 1990; Structure, genetic mapping, and expression of the gene for pyruvate, orthophosphate dikinase from maize. J Biol Chem 265:16772–16777
    [Google Scholar]
  31. Matsuoka M. 1995; The gene for pyruvate, orthophosphate dikinase in C4 plants : structure, regulation and evolution. Plant Cell Physiol 36:937–943
    [Google Scholar]
  32. Meade H.M., Long S. R., Ruvkun G. B., Brown S. E., Ausubel F. M. 1982; Physical and genetical characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149:114–122
    [Google Scholar]
  33. Miller J. H. 1972; Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. Experiments in Molecular Genetics.
    [Google Scholar]
  34. Nevalainen L., Hrdy I., Muller M. 1996; Sequence of a Giardia lamblia gene coding for the glycolytic enzyme, pyruvate, phosphate dikinase. Mol Biochem Parasitol 77:217–223
    [Google Scholar]
  35. Niersbach M., Kreuzaler F., Geerse R. H., Postma P. W., Hirsch H. J. 1992; Cloning and nucleotide sequence of the Escherichia coli K-12 ppsA gene, encoding PEP synthase. Mol Gen Genet 231:332–336
    [Google Scholar]
  36. Oresnik I. J., Kreuzaler F., Charles T. C., Finan T. M. 1994; Second site mutations specifically suppress the Fix- phenotype of Rhizobium meliloti ndvF mutations on alfalfa : identification of a conditional ndvF-dependent mucoid colony phenotype. Genetics 136:1233–1243
    [Google Scholar]
  37. Østerȧs M., Finan T. M., Stanley J. 1991; Site-directed mutagenesis and DNA sequence of pckA of Rhizobium NGR234, encoding phosphoenolpyruvate carboxykinase : gluconeogenesis and host-dependent symbiotic phenotype. Mol Gen Genet 230:257–269
    [Google Scholar]
  38. Østerȧs M., Driscoll B. T., Finan T. M. 1995; Molecular and expression analysis of the Rhizobium meliloti phosphoenolpyruvate carboxykinase (pckA) gene. J Bacteriol 177:1452–1460
    [Google Scholar]
  39. Petzel J. P., McElwain M. C., DeSantis D., Manolukas J., Williams M. V., Hartman P. A., Allison M. J., Pollack J.D. 1989; Enzymic activities of carbohydrate, purine, and pyrimidine metabolism in the Anaeroplasmataceae (class Mollicutes). Arch Microbiol 152:309–316
    [Google Scholar]
  40. Pocalyko D. J., Carroll L. J., DeSantis D., Martin B. M., Babbitt P. C, Dunaway-Mariano D. 1990; Analysis of sequence homologies in plant and bacterial pyruvate phosphate dikinase, enzyme I of the bacterial phosphoenolpyruvate : sugar phosphotransferase system and other PEP-utilizing enzymes. Identification of potential catalytic and regulatory motifs. Biochemistry 29:10757–10765
    [Google Scholar]
  41. Reeves R. E. 1968; A new enzyme with the glycolytic function of pyruvate kinase. J Biol Chem 243:3202–3204
    [Google Scholar]
  42. Reeves R. E. 1971; Pyruvate, phosphate dikinase from Bacteroides symbiosus. . Biochem J 125:531–539
    [Google Scholar]
  43. Reeves R. E., Menzies R. E., Hu D. S. 1968; Pyruvate, phosphate dikinase reaction. J Biol Chem 243:5846–5491
    [Google Scholar]
  44. Reizer J., Hoischen C., Reizer A., Pham T. N., Saier M. H. 1993; Sequence analyses and evolutionary relationships among the energy-coupling proteins Enzyme I and HPr of the bacterial phosphoenolpyruvate : sugar phosphotransferase system. Protein Sci 2:506–521
    [Google Scholar]
  45. Riess G., Holloway B. W. , PUhler A. 1980; R68.45, a plasmid with chromosome mobilizing ability (Cma) carries a tandem duplication. Genet Res 36:99–109
    [Google Scholar]
  46. Robinson K. A., Schreier H. J. 1994; Isolation, sequence and characterization of the maltose-regulated mlrA gene from the hyperthermophilic archaeum Pyrococcus furiosus . Gene 151:173–176
    [Google Scholar]
  47. Rosche E., Westhoff P. 1990; Primary structure of pyruvate, orthophosphate dikinase in the dicotyledonous C4 plant Flaveria trinervia. FEBS Lett 273:116–121
    [Google Scholar]
  48. Rosche E., Streubel M., Westhoff P. 1994; Primary structure of pyruvate, orthophosphate dikinase of the C3 plant Flaveria pringlei and expression analysis of pyruvate, orthophosphate dikinase sequences in C3, C3-C4 and C4 Flaveria species. Plant Mol Biol 26:763–769
    [Google Scholar]
  49. Saavedra-Lira E., Pérez-Montfort R. 1994; Cloning and sequence determination of the gene coding for the pyruvate phosphate dikinase of Entamoeba histolytica. . Gene 142:249–251
    [Google Scholar]
  50. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
    [Google Scholar]
  51. Schwitzguébel J.-P, Ettlinger L. 1979; Pyruvate, orthophosphate dikinase from Acetobacter aceti . Arch Microbiol 122:103–108
    [Google Scholar]
  52. Usami S., Ohta S., Komari T., Burnell J. N. 1995; Cold stability of pyruvate, orthophosphate dikinase of Flaveria brownii. Plant Mol Biol 27:969–980
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-5-1639
Loading
/content/journal/micro/10.1099/00221287-143-5-1639
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error