1887

Abstract

has two types of flagella, polar (Pof) and lateral (Laf). From a Laf-defective mutant (PofLaf), polar-flagellar-length mutants which have short Pof and long Pof were isolated. The mean lengths of the helical axis in wild-type, short and long Pof were 5.5.0.9 μm, 2.5.0.6 μm and 11.2.3.6 μm, respectively. The swimming speeds of the short- and long-Pof mutants were slower than that of the wild-type strain. The relationship between swimming speed and flagellar length in a population of mutant cells was examined. In the short-Pof mutant, the decrease of swimming speed seemed to be derived from the decrease in flagellar length. In the long-Pof mutant, there was almost no correlation between swimming speed and flagellar length, and the slow swimming was explained by the helical shape of the flagella, whose pitch and radius were 1.4 μm and 0.062 μm, respectively, whereas those of the wild-type flagella were 1.5 μm and 0.16 μm. The relative amounts of the various molecular components of the long Pof were different from those of the wild-type or the short Pof. This seems to be the reason for the difference in flagellar shape and length, though the mutation may be pleiotropic and affect flagellar function or regulation.

Keyword(s): flagella , flagellin , morphogenesis and Vibrio
Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-5-1615
1997-05-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/5/mic-143-5-1615.html?itemId=/content/journal/micro/10.1099/00221287-143-5-1615&mimeType=html&fmt=ahah

References

  1. Allen R. D., Baumann P. 1971; Structure and arrangement of flagella in species of the genus Beneckea and Photobacterium fischeri. J Bacteriol 107:295–302
    [Google Scholar]
  2. Atsumi T., McCarter L., Imae Y. 1992; Polar and lateral flagellar motors of marine Vibrio are driven by different ionmotive forces. Nature 355:182–184
    [Google Scholar]
  3. Atsumi T., Maekawa Y., Yamada T., Kawagishi I., Imae Y., Homma M. 1996; Effect of viscosity on swimming by the lateral and polar flagella of Vibrio alginolyticus. J Bacteriol 178:5024–5026
    [Google Scholar]
  4. Belas M., Colwell R. R. 1982; Scanning electron microscope observation of the swarming phenomenon of Vibrio parahaemolyticus. J Bacteriol 150:956–959
    [Google Scholar]
  5. de-Boer W. E., Golten C., Scheffers W. A. 1975; Effects of some chemical factors on flagellation and swarming of Vibrio alginolyticus. Antonie Leeuwenhoek J Microbiol Serol 41:385–403
    [Google Scholar]
  6. Calladine C. R. 1978; Change of wave form in bacterial flagella: the role of mechanics at the molecular level. J Mol Biol 118:457–479
    [Google Scholar]
  7. E. A. C. 1963; An electron microscope study of Vibrio flagella. J Gen Microbiol 32:235–239
    [Google Scholar]
  8. Homma M., Oota H., Kojima S., Kawagishi J., Imae Y. 1996; Chemotactic responses to an attractant and a repellent in the flagellar systems of Vibrio alginolyticus. Microbiology 142:2777–2783.
    [Google Scholar]
  9. lino T. 1974; Assembly of Salmonella flagellin in vitro and in vivo. J Supramol Struct 2:372–384
    [Google Scholar]
  10. lino T. 1985; Structure and assembly of flagella. In Molecular Cytology ofEscherichia coli, pp. London : Academic Press Edited by N. Nanninga 9–37
    [Google Scholar]
  11. Ikeda T., Kamiya R., Yamaguchi S. 1983; Excretion of flagellin by a short-flagella mutant of Salmonella typhimurium. J Bacteriol 153:506–510
    [Google Scholar]
  12. Ikeda T., Kamiya R., Yamaguchi S. 1984; In vitro polymerization of flagellin excreted by a short-flagellum Salmonella typhimurium mutant. J Bacteriol 159:787–789
    [Google Scholar]
  13. Jones C. J., Aizawa S. 1991; The bacterial flagellum and flagellar motor : structure, assembly and function. Adv Microb Physio l32:110–172
    [Google Scholar]
  14. Josenhans C., Labigne A., Suerbaum S. 1995; Comparative ultrastructural and functional studies of Helicobacter pylori and Helicobacter mustelae flagellin mutants : both flagellin subunits, FlaA and FlaB, are necessary for full motility in Helicobacter species. J Bacteriol 177:3010–3020
    [Google Scholar]
  15. Kamiya R., Asakura S. 1976; Helical transformations of Salmonella flagella in vitro. J Mol Biol 106:167–186
    [Google Scholar]
  16. Kawagishi I., Okunishi I., Homma M., Imae Y. 1994; Removal of the periplasmic DNase before electroporation enhances efficiency of transformation in the marine bacterium Vibrio alginolyticus. Microbiology 140:2355–2361
    [Google Scholar]
  17. Kawagishi I., Maekawa Y., Atsumi T., Homma M., Imae Y. (1995). Isolation of polar and lateral flagellar defective mutants in Vibrio alginolyticus and identification of their flagellar driving energy sources. J Bacteriol 177:5158–5160
    [Google Scholar]
  18. Kawagishi I., Imagawa M., Imae Y., McCarter L., Homma M. 1996; The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression. . Mol Microbio l20:693–699
    [Google Scholar]
  19. McCarter L. L. 1995; Genetic and molecular characterization of the polar flagellum of Vibrio parahuemolyticus. J Bucteriol 177:1595–1609
    [Google Scholar]
  20. McCarter L., Silverman M. 1990; Surface-induced swarmer cell differentiation of Vibrio parahaemolyticus. Mol Microbiol 4:1057–1062
    [Google Scholar]
  21. McCarter L., Hilmen M., Silverman M. 1988; Flagellar dynamometer controls swarmer cell differentiation of V . parahaemolyticus. . Cell 54:345–351
    [Google Scholar]
  22. McGee K., Horstedt P., Milton D. L. 1996; Identification and characterization of additional flagellin genes from Vibrio anguillarum. . J Bacteriol 178:5188–5198
    [Google Scholar]
  23. Magariyama Y., Sugiyama S., Muramoto K., Maekawa Y., Kawagishi I., Imae Y., Kudo S. 1994; Very fast flagellar rotation. Nature 371:752
    [Google Scholar]
  24. Magariyama Y., Sugiyama S., Muramoto K., Kawagishi I., Imae Y., Kudo S. 1995; VSimultaneous measurement of bacterial flagellar rotation rate and swimming speed. Biophys J 69:2154–2162
    [Google Scholar]
  25. Mimori Y., Yamashita I., Murata K., Fujiyoshi Y., Yonekura K., Toyoshima C., Namba K. 1995; The structure of the R-type straight flagellar filament of Salmonella at 9 angstrom resolution by electron cryomicroscopy. J Mol Biol 249:69–87
    [Google Scholar]
  26. Morgan D. G., Owen C., Melanson L. A., DeRosier D. J. 1995; Structure of bacterial flagellar filaments at 11 angstrom resolution: packing of the a-helices. J Mol Biol 249:88–110
    [Google Scholar]
  27. Muramoto K., Kawagishi I., Kudo S., Magariyama Y., Imae Y., Homma M. 1995; High-speed rotation and speed stability of sodium-driven flagellar motor in Vibrio alginolyticus. J Mol Biol 251:50–58
    [Google Scholar]
  28. Muramoto K., Magariyama Y., Homma M., Kawagishi I., Sugiyama S., Imae Y., Kudo S. 1996; Rotational fluctuation of the sodium-driven flagellar motor of Vibrio alginolyticus induced by binding of inhibitors. J Mol Biol 259:687–695
    [Google Scholar]
  29. Okunishi I., Kawagishi J., Homma M. 1996; Cloning and characterization of motY, a gene coding for a component of the sodium-driven flagellar motor in Vibrio alginolyticus. J Bacteriol 178:2409–2415
    [Google Scholar]
  30. Sjoblad R. D., Emala C. W., Doetsch R. N. 1983; Bacterial flagellar sheaths : structures in search of a function. Cell Motil 3:93–103
    [Google Scholar]
  31. Ulitzur S. 1974; Induction of swarming in Vibrio parahaemolyticus. Arch Microbiol 101:357–363
    [Google Scholar]
  32. Ulitzur S. 1975; The mechanism of swarming of Vibrio alginolyticus. Arch Microbiol 104:67–71
    [Google Scholar]
  33. Yokoseki T., Kutsukake K., Ohnishi K., lino T. 1995; Functional analysis of the flagellar genes in the fliD operon of Salmonella typhimurium. Microbiology 141:1715–1722
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-5-1615
Loading
/content/journal/micro/10.1099/00221287-143-5-1615
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error