1887

Abstract

flavohaemoglobin (Hmp) reduced purified mitochondrial cytochrome c aerobically in a reaction that was not substantially inhibited by superoxide dismutase, demonstrating that superoxide anion, the product of O reduction by Hmp, did not contribute markedly to cytochrome reduction. Cytochrome was reduced by Hmp even in the presence of 0⋅ 5 mM CO, when the haem B was locked in the ferrous, low-spin state, demonstrating that electron transfer to cytochrome from NADH was via FAD, not haem. Hmp also reduced the ferrisiderophore complex Fe(III)-hydroxamate K from bv. anaerobically in a CO-insensitive manner, but at low rates and with low affinity for this substrate. The NADH-cytochrome oxidoreductase activity of Hmp was slightly sensitive to the binding and reduction of O at the haem. The of cytochrome reduction fell from 7.1 sin the presence of 0⋅5 mM CO to 5⋅0 sin the presence of 100 μM Owith no significant change in K for cytochrome (6⋅8 to 7⋅3 μM, respectively). O at near-micromolar concentrations diminished cytochrome reduction to a similar extent as did 100 μM O Thus, Hmp acts as a reductase of broad specificity, apparently without involvement of electron transfer via the globin-like haem. These data are consistent with the hypothesis that Hmp could act as an intracellular sensor of O since, in the absence of O electron flux from FAD to other electron acceptors increases. However, the nature of such acceptors is not known and alternative models for O sensing are also considered.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-5-1557
1997-05-01
2024-09-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/5/mic-143-5-1557.html?itemId=/content/journal/micro/10.1099/00221287-143-5-1557&mimeType=html&fmt=ahah

References

  1. Andrews S. C., Shipley D., Keen J. N., Findlay J. B. C., Harrison P. M., Guest J. R. 1992; The haemoglobin-like protein (HMP) of Escherichia coli has ferrisiderophore reductase activity and its C-terminal shares homology with ferredoxin NADP+ reductases. . FEBS Lett 302:247–252
    [Google Scholar]
  2. Appleby C. A., Bogusz D., Dennis E. S., Peacock W. J. 1988; A role for haemoglobin in all plant roots ? . Plant Cell Environ 11:359–367
    [Google Scholar]
  3. Atkin C. L., Neilands J.B., Phaff H. 1970; Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorufa, Sporidiobofus and Sporobofomyces and a new alanine-containing ferrichrome from Cryptococcus mefibiosum . J Bacteriol 103:722–733
    [Google Scholar]
  4. Brown C. M., Dilworth M.J. 1975; Ammonia assimilation by Rhizobium cultures and bacteroids. J Gen Microbiof 86:39–48
    [Google Scholar]
  5. Carson K. C., Dilworth M.J., Glenn A.R. 1992; Siderophore production and iron transport in Rhizobium feguminosarum bv viciae MNF710. J Plant Nutr 15:2203–2220
    [Google Scholar]
  6. Carson K. C., Dilworth M.J., Glenn A.R. 1994; pecificity of siderophore-mediated transport of iron in rhizobia. Arch Microbiof 161:333–339
    [Google Scholar]
  7. Cooper C. E., loannidis N., D´mello R., Poole R.K. 1994; Haem, flavin and oxygen interactions in Hmp, a flavohaemoglobin from Escherichia coli . Biochem SOC Trans 22:709–713
    [Google Scholar]
  8. Coves J., Fontecave M. 1993; Reduction and mobilisation of iron by a NAD(P)H : flavin oxidoreductase from Escherichia coli . Eur J Biochem 211:635–641
    [Google Scholar]
  9. Coves J., Eschenbrenner M., Fontecave M. 1993; Sulfite reductase of Escherichia coli is a ferrisiderophore reductase. Biochem Biophys Res Commun 192:1403–1408
    [Google Scholar]
  10. Cox M. C., Rogers M.S., Cheesman M., Jones G.D., Thomson A.J., Wilson M.T., Moore G.R. 1992; Spectroscopic identification of the haem ligands of cellobiose oxidase. FEBS Lett 307:233–236
    [Google Scholar]
  11. Cramm R., Siddiqui R.A., Friedrich B. 1994; Primary sequence and evidence for a physiological function of the flavohaemoprotein of Alcaligenes eutrophus. . J Biol Chem 269:7349–7354
    [Google Scholar]
  12. Dailey H. A., Lascelles J. 1977; Reduction of iron and synthesis of protoheme by Spirillum itersonii and other organisms . J Bacteriol 129:815–820
    [Google Scholar]
  13. Emery T. 1987; Reductive mechanisms of iron assimilation. In lron Transport in Microbes, Plants and Animals , Edited by G. Winkelmann, D. van der Helm & J. B. Neilands. Weinheim . VCH235–250.
    [Google Scholar]
  14. Ermler U., Siddiqui R. A., Cramm R., Friedrich B. 1995; Crystal structure of the flavohemoglobin from Alcaligenes eutrophus at 1⋅75 Å resolution. EMBO J 14:6067–6077
    [Google Scholar]
  15. Eschenbrenner M., Coves J., Fontecave M. 1994; Ferric reductases in Escherichia coli : the contribution of the haemoglobin- like protein. Biochem Biophys Res Commun 198:127–131
    [Google Scholar]
  16. Favey S., Labesse G., Vouille V., Boccara M. 1995; Flavohaemoglobin HmpX : a new pathogenicity determinant in Erwinia chrysanthemi strain 3937. Microbiology 141:863–871
    [Google Scholar]
  17. Fischer E., Strehlow B., Hartz D., Braun V. 1990; Soluble and membrane-bound ferrisiderophore reductases of Escherichia coli K-12. Arch Microbiol 153:329–336
    [Google Scholar]
  18. Fontecave M., Eliasson R., Reichard P. 1987; NAD(P)H : flavin oxidoreductase of Escherichia coli . A ferric iron reductase participating in the generation of the free radical of ribonucleotide reductase. J Biol Chem 262:12325–12331
    [Google Scholar]
  19. Fontecave M., Coves J., Pierre J.-L. 1994; Ferric reductases or flavin reductases ?. Biometals 7:3–8
    [Google Scholar]
  20. Gennis R.B., Stewart V. 1996; Respiration. In Escherichia coli and Salmonella: Cellular and Molecular Biology , 2nd edn,Edited by F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S . Reznikoff, M. Riley, M. Schaechter & H. E. Umbarger. Washington, DC:. American Society for Microbiology.
    [Google Scholar]
  21. Gilles-Gonzélez M.A., Gonzélez G., Perutz M.F. 1995; Kinase activity of oxygen sensor FixL depends on the spin state of its heme iron. Biochemistry 34:232–236
    [Google Scholar]
  22. Gonzales-Prevatt V., Webster D.A. 1980; Purification and properties of NADH-cytochrome c reductase from Vitreoscilla . J Biol Chem 255:1478–1482
    [Google Scholar]
  23. Haliwell B., Gutteridge J. M. C. 1989; Free Radicals in Biology and Medicine . Oxford :. Clarendon Press
    [Google Scholar]
  24. Henrikson G., Johansson G., Pettersson G. 1993; Is cellobiose oxidase from Phanerochaete chrysosporium a one-electron reductase ?. Biochim Biophys Acta 144:184–190
    [Google Scholar]
  25. Hidalgo E., Bollinger J.M., Bradley T.M., Walsh C.T., Demple B. 1995; Binuclear [2Fe-2S] clusters in the Escherichia coli SoxR protein and role of the metal centers in transcription. J Biol Chem 270:20908–20914
    [Google Scholar]
  26. loannidis N., Cooper C.E., Poole R.K. 1992; Spectroscopic studies on an oxygen-binding haemoglobin-like flavohaemoprotein from Escherichia coli . Biochem J 288:649–655
    [Google Scholar]
  27. lobbinivol C., Crooke H., Griffiths L., Grove J., Hussain H., Pommier J., Mejean V., Cole J.A. 1994; A reassessment of the range of c-type cytochromes synthesised by Escherichia coli K-12. FEMS Microbiol Lett 119:89–94
    [Google Scholar]
  28. Iwaasa H., Takagi T., Shikama K. 1992; Amino acid sequence of yeast hemoglobin. A two-domain structure. J Mol Biol 227:948–954.
    [Google Scholar]
  29. Jakob W., Webster D.A., Kroneck P.M.H. (1992).; NADHdependent methemoglobin reductase from the obligate aerobe Vitreoscilla : improved method of purification and reexamination of the prosthetic groups. Arch Biochem Biophys 292:29–33
    [Google Scholar]
  30. Karplus P. A., Bruns C.M. (1994).; Structurefunction relation for ferredoxin reductase. J Bioenerg Biomembr 26:89–99
    [Google Scholar]
  31. Khosla C., Bailey J.E. (1989).; Evidence for partial export of Vitreoscilla hemoglobin into the periplasmic space in Escherichia coli . Implications for protein function. J Mol Biol 210:79–89
    [Google Scholar]
  32. Kremer S.M., Wood P.M. (1992).; Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase. Kinetic comparison with neutrophil NADPH oxidase and yeast flavocytochrome b2. Eur J Biochem 210:133–138
    [Google Scholar]
  33. LaCelle M., Kumano M., Kurita K., Yamane K., Zuber K., Nakano M.M. (1996).; Oxygen-controlled regulation of the flavohemoglobin gene in Bacillus subtilis . J Bacteriol 178,:3803–3808
    [Google Scholar]
  34. Membrillo-Hernández J., loannidis N., Poole R.K. (1996).; The flavohaemoglobin (HMP) of Escherichia coli generates superoxide in vitro and causes oxidative stress in vivo. FEBS Lett 382:141–144
    [Google Scholar]
  35. Mohazzab-H K.M., Wolin M.S. (1994).; Properties of a superoxide anion-generating microsomal NADH oxidoreductase, a potential pulmonary artery P o2 sensor. Am J Physiol 267:L823–L831
    [Google Scholar]
  36. Neilands J.B. (1952).; A crystalline organo-iron pigment from the smut fungus Ustilago sphaerogena . J Am Chem SOG 74:4846–4847
    [Google Scholar]
  37. Orii Y. (1993).; Immediate reduction of cytochrome c by photoexcited NADH : reaction mechanism as revealed by flow-flash and rapid-scan studies. Biochemistry 32:11910–11914
    [Google Scholar]
  38. Orii Y., loannidis N., Poole R.K. (1992).; The oxygenated flavohaemoglobin from Escherichia coli : evidence from photodissociation and rapid-scan studies for two kinetic and spectral forms. Biochem Biophys Res Commun 187:94–100
    [Google Scholar]
  39. Oshino R., Oshino N., Chance B., Hagihara B. (1973a).; Studies on yeast hemoglobin. The properties of yeast hemoglobin and its physiological function in the cell. Eur J Biochem 35:23–33
    [Google Scholar]
  40. Oshino R., Asakura T., Tajio K., Oshino N., Chance B., Hagihara B. (1973b).; Purification and molecular properties of yeast hemoglobin. Eur J Biochem 39:581–590
    [Google Scholar]
  41. Perutz M.F. (1986).; A bacterial haemoglobin. Nature322–405
    [Google Scholar]
  42. Poole R.K. (1994).; Oxygen reactions with bacterial oxidases and globins : binding, reduction and regulation. Antonie Leeuwenhoek 65:289–310
    [Google Scholar]
  43. Poole R.K., loannidis N., Orii Y. (1994).; Reactions of the Escherichia coli flavohaemoglobin (Hmp) with oxygen and reduced nicotinamide adenine dinucleotide : evidence for oxygen switching of flavin oxidoreduction and a mechanism for oxygen sensing. Proc R SOC Lond B 255:251–258
    [Google Scholar]
  44. Poole R.K., loannidis N., Orii Y. (1996a).; Reactions of the Escherichia coli flavohaemoglobin (Hmp) with NADH and nearmicromolar oxygen : oxygen affinity of NADH oxidase activity. Microbiology 142:1141–1148
    [Google Scholar]
  45. Poole R.K., Anjum M.F., Membrillo-Hernandez J., Kim S.O., Hughes M.N., Stewart V. (1996b).; Nitric oxide, nitrite, and Fnr regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12. ] Bacteriol 178:5487–5492
    [Google Scholar]
  46. Probst I., Wolf G., Schlegel H.G. (1979).; An oxygen-binding flavohemoprotein from Alcaligenes eutrophus . Biochim Biophys Acta 576:471–478
    [Google Scholar]
  47. Rouault T.A., Klausner R.D. (1996).; Iron-sulfur clusters as biosensors of oxidants and iron. Trends Biochem Sci 21:174–177
    [Google Scholar]
  48. Stookey L.L. (1970).; Ferrozine : a new spectrophotometric reagent for iron. Anal Chem 42:779–781
    [Google Scholar]
  49. Vasudevan S.G., Armarego W. L. F., Shaw D. C., Lilley P. E., Dixon N. E., Poole R.K. (1991).; FIsolation and nucleotide sequence of the hmp gene that encodes a haemoglobin-like protein in Escherichia coli K-12. Mol Gen Genet 226:49–5
    [Google Scholar]
  50. Vasudevan S.G., Tang P., Dixon N. E., Poole R.K. (1995).; Distribution of the flavohaemoglobin, HMP, between periplasm and cytoplasm in Escherichia coli . FEMS Microbiol Lett 125:219–224
    [Google Scholar]
  51. Webster D.A. (1987).; proteins. In Advances in Inorganic Biochemistry , Edited by G. L. Eichhorn & L. G. Marzilli. New York:. Elsevier 7:245–265
    [Google Scholar]
  52. Zhu H., Riggs A.F. (1992).; Yeast flavohemoglobin is an ancient protein related to globins and a reductase family. Proc Natl Acad Sci USA 89:5015–5019
    [Google Scholar]
/content/journal/micro/10.1099/00221287-143-5-1557
Loading
/content/journal/micro/10.1099/00221287-143-5-1557
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error