1887

Abstract

Environmental sensing in bacteria often involves the concerted action of sensor kinases and response regulators. Degenerate oligonucleotide primers were designed on the basis of amino acid similarity in the response regulators of these two-component sytems. The primers were used in PCR to specifically amplify an internal DNA segment corresponding to the receiver module domain from genes encoding response regulators. Amplification products of the expected size were obtained from 12 different Gram-positive and Gram-negative bacteria. Sequence analysis revealed that 22 DNA fragments, which clearly originated from response regulator genes, were amplified from and In each of these four species the receiver module of putative response regulator genes, which do not seem to be related to any of the already characterized genes, was identified. This simple and powerful method is therefore particularly useful for discovering new signal transduction systems which cannot be revealed by usual genetic studies.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-5-1513
1997-05-01
2021-07-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/5/mic-143-5-1513.html?itemId=/content/journal/micro/10.1099/00221287-143-5-1513&mimeType=html&fmt=ahah

References

  1. Aiba H., Nagaya M., Mizuno T. 1993; Sensor and regulator proteins from the cyanobacterium Synechococcus species PCC7942 that belong to the bacterial signal-transduction protein families: implication in the adaptative response to phosphate limitation. Mol Microbiol 8:81–91
    [Google Scholar]
  2. Alex L. A., Simon M. I. 1994; Protein histidine kinases and signal transduction in prokaryotes and eukaryotes. Trends Genet 10:133–139
    [Google Scholar]
  3. Amemura M., Makino K., Shinagawa H., Nakata A. 1986; Nucleotide sequence of the phoM region of Escherichia coli: four open reading frames may constitute an operon. J Bacteriol 168:294–302
    [Google Scholar]
  4. Appleby J. L., Parkinson J. S., Bourret R. B. 1996; Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell 86:845–848
    [Google Scholar]
  5. Bayles K. W. 1993; The use of degenerate, sensor gene-specific, oligodeoxyribonucleotide primers to amplify DNA fragments from Staphylococcus aureus. Gene 123:99–103
    [Google Scholar]
  6. Bult C. J. 1996; Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073
    [Google Scholar]
  7. Chang C., Meyerowitz E. M. 1994; Eukaryotes have ‘two-component’ signal transducers. Res Microbiol 145:481–486
    [Google Scholar]
  8. Charles T. C., Nester E. W. 1993; A chromosomally encoded two-component sensory transduction system is required for virulence of Asrobacterium tumefaciens. J Bacteriol 175:6614–6625
    [Google Scholar]
  9. Compton T. 1990; Degenerate primers for PCR amplification. In PCR Protocols: a Guide to Methods and Applications, pp.. 39–45 Edited by M. A. Innis, D. H. Gelfand, J. J. Sninsky &T. J. White. London: Academic Press
    [Google Scholar]
  10. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  11. Dong J., luchi S., Kwan H. S., Lu Z., Lin E. C. 1993; The deduced amino-acid sequence of the cloned cpxR gene suggests the protein is the cognate regulator for the membrane sensor CpxA in a two-component signal transduction system of Escherichia coli. Gene 13:227–230
    [Google Scholar]
  12. Duwat P., Ehrlich S. D., Gruss A. 1992; A general method for cloning recA genes of Gram-positive bacteria by polymerase chain reaction. J Bacteriol 174:5171–5175
    [Google Scholar]
  13. Falke J. J., Blair D. F., Silhavy T. J., Schmitt R. 1995; blast 1995: International conference on bacterial locomotion and signal transduction. Mol Microbiol 16:1037–1050
    [Google Scholar]
  14. Fleischmann R. D. others 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512
    [Google Scholar]
  15. Hoch J. A., Silhavy T. J. editors 1995; Two-component Signal Transduction. Washington, DC: American Society for Microbiology. Mol Microbiol 16:1037–1050
    [Google Scholar]
  16. Kado C. I., Heskett M. G., Langley R. A. 1972; Studies on Agrobacterium tumefaciens. Characterization of strains ID 135 and B6, and analysis of the bacterial chromosome, transfer RNA, and ribosomes for tumor inducing ability. Physiol Plant Pathol 2:47–59
    [Google Scholar]
  17. Kaufman B. I., Nixon B. T. 1996; Use of PCR to isolate genes encoding σ54-dependent activators from diverse bacteria. J Bacteriol 178:3967–3970
    [Google Scholar]
  18. Lee B. T. O., Brown N. L., Rogers S., Bergemann A., Camakaris J., Rouch D. A. 1990; Bacterial response to copper in the environment: copper resistance in Escherichia coli as a model system. NATO ASI Ser Ser G Ecol Sci 23:625–632
    [Google Scholar]
  19. Lee P.-J., Stock A. M. 1996; Characterization of the genes and proteins of a two-component system from the hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 178:5579–5585
    [Google Scholar]
  20. Makino K., Shinagawa H., Amemura M., Nakata A. 1986; Nucleotide sequence of the phoB gene, the positive regulatory gene for the phosphate regulon of Escherichia coli K12. J Mol Biol 190:37–44
    [Google Scholar]
  21. Nagasawa S., Tokishita S., Aiba A., Mizuno T. 1992; A novel sensor-regulator protein that belongs to the homologous family of signal-transduction proteins involved in adaptative responses in Escherichia coli. Mol Microbiol 6:799–807
    [Google Scholar]
  22. Nagasawa S., Ishige K., Mizuno T. 1993; Novel members of the two-component signal tranduction genes in Escherichia coli. J Biochem 114:350–357
    [Google Scholar]
  23. Ogasawara N., Yoshikawa H. 1992; Genes and their organisation in the replication origin region of the bacterial chromosome. Mol Microbiol 6:629–634
    [Google Scholar]
  24. Ogawa K., Akagawa E., Nakamura K., Yamane K. 1995; Determination of a 21548 bp nucleotide sequence around the 24° region of the Bacillus subtilis chromosome. Microbiology 141:269–275
    [Google Scholar]
  25. Pao G. M., Saier M. H. >Jr 1995; Response regulators of bacterial signal transduction systems: selective domain shuffling during evolution. J Mol Evol 40:136–154
    [Google Scholar]
  26. Parkinson J. S. 1993; Signal transduction schemes of bacteria. Cell 73:857–871
    [Google Scholar]
  27. Parkinson J. S., Kofoid E. C. 1992; Communication modules in bacterial signalling proteins. Annu Rev Genet 26:71–112
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory..
    [Google Scholar]
  29. Sorokin A., Serror P., Pujic P., Azevedo V., Ehrlich S. D. 1995; The Bacillus subtilis chromosome region encoding homologues of the Escherichia coli mssA and rpsA gene products. Microbiology 141:311–319
    [Google Scholar]
  30. Stock J. B., Ninfa A. D., Stock A. M. 1989a; Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53:450–490
    [Google Scholar]
  31. Stock A. M., Mottonen J. M., Stock J. B., Schutt C. E. 1989b; Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis. Nature 337:745–749
    [Google Scholar]
  32. Stock J. B., Stock A. M., Mottonen J. M. 1990; Signal transduction in bacteria. Nature 344:395–400
    [Google Scholar]
  33. Stock J. B., Surette M. G., Levit M., Stock A. M. 1995; Two-component signal transduction systems: structure—function relationships and mechanisms of catalysis. In Two-component Signal Transduction, pp.. 25–51 Edited by J. A. Hoch &T. J. Silhavy. Washington, DC: American Society for Microbiology
    [Google Scholar]
  34. Volz K. 1993; Structural conservation among the CheY superfamily. Biochemistry 32:11741–11753
    [Google Scholar]
  35. Volz K. 1995; Structural and functional conservation in response regulators. In Two-component Signal Transduction, pp.. 53–64 Edited by J. A. Hoch &T. J. Silhavy. Washington, DC: American Society for Microbiology
    [Google Scholar]
  36. Volz K., Matsumura P. 1991; Crystal structure of Escherichia coli CheY refined at 1∙7 Å resolution. J Biol Chem 266:15511–15519
    [Google Scholar]
  37. Wanner B. L. 1992; Is cross regulation by phosphorylation of two-component response regulator proteins important in bacteria?. J Bacteriol 174:2053–2058
    [Google Scholar]
  38. Wren B. W., Colby S. M., Cubberley R. R., Pallen M. J. 1992; Degenerate PCR primers for the amplification of fragments from genes encoding response regulators from a range of pathogenic bacteria. FEMS Microbiol Lett 78:287–291
    [Google Scholar]
  39. Wurtzel E. T., Chou M. Y., Inouye M. 1982; Osmoregulation of gene expression. I. DNA sequence of the ompR gene of the ompB operon of Escherichia coli and characterization of its gene product. J Biol Chem 257:13685–13691
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-5-1513
Loading
/content/journal/micro/10.1099/00221287-143-5-1513
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error