1887

Abstract

The genomic relationship between isolates representing 17 definitive phage types (DTs) of subsp. serotype were analysed using three different typing methods: IS typing using the restriction enzymes RI and ll, ribotyping using and RI, and PFGE using These methods were used to study four DTs in greater detail; in all 18 (DT 49), 10 (DT 110), five (DT 120) and seven (DT 135) isolates were studied. The combined data generated two large clusters, which could be divided into five groups. Within the first cluster, a close similarity was indicated between isolates of the following phage types: group A – DTs 44, 49, 135 and 204c, with DT 9 distantly related; group B – DTs 95 and 99; and group C – DTs 104a, 110 and 120. The other large cluster contained group D – DTs 10, 20 and 146, with DT 12 distantly related, and group E – DTs 69, 103 and 153. The same grouping was observed by principal component analysis, but a minimum spanning tree linked DT 12 to group E and not group D in this analysis. Among the typing methods used, IS gave the best representation of the overall similarity between the isolates. Five different IS profiles were obtained among isolates belonging to DT 49. Only one profile was observed within each of the phage types DT 110, 120 and 135. All isolates within each of these four phage types were of one ribotype. Isolates of DT 49 showed four PFGE patterns, while one pattern was present within isolates of the three other phage types. Members of these four phage types were found to be clonally related as they formed tight subclusters separated from isolates of other phage types.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-4-1471
1997-04-01
2021-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/4/mic-143-4-1471.html?itemId=/content/journal/micro/10.1099/00221287-143-4-1471&mimeType=html&fmt=ahah

References

  1. Anderson E. S., Ward L. R., de Saxe M. J. 1977; Bacteriophage-typing designations of Salmonella typhimurium.. J Hyg 78:297–300
    [Google Scholar]
  2. Baggesen D. L., Wegener H. C. 1994; Phage types of Salmonella enterica spp. enterica serovar typhimurium isolated from production animals and humans in Denmark.. Acta Vet Scand 35:349–354
    [Google Scholar]
  3. Barker R. M., Old D. C. 1989; The usefulness of biotyping in studying the epidemiology and phylogeny of salmonellae.. J Med Microbiol 29:81–88
    [Google Scholar]
  4. Beltran P., Musser J. M., Helmuth R., 8 other authors . 1988; Towards a population genetic analysis of Salmonella: genetic diversity and relationships among isolates of serotypes S. choleraesuis, S. derby, S. dublin, S. enteritidis, S. heidelberg, S. infantis, S. newport and S . typhimurium.. Proc Natl Acad Sci USA 85:7753–7757
    [Google Scholar]
  5. Callow B. R. 1959; A new phage-typing scheme for Salmonella typhimurium.. J Hyg 57:346–359
    [Google Scholar]
  6. Cameron D. N., Khambaty F. M., Wachsmuth I. K., Tauxe R. V., Barret T. J. 1994; Molecular characterization of Vibrio cholerae O1 isolates by pulsed-field gel electrophoresis.. J Clin Microbiol 32:1685–1690
    [Google Scholar]
  7. Chowdry N., Threlfall E. J., Rowe B., Stanley E. J. 1993; Genotype analysis of faecal and blood isolates of Salmonella dublin from humans in England and Wales.. Epidemiol Infect 110:217–225
    [Google Scholar]
  8. Christensen J. P., Olsen J. E., Bisgaard M. 1993; Ribotypes of Salmonella enterica serovar Gallinarum biovars gallinarum and pullorum.. Avian Pathol 22:725–738
    [Google Scholar]
  9. Gibert I., Barbé J., Casadesús J. 1990; Distribution of insertion sequence IS200 in Salmonella and Shigella.. J Gen Microbiol 136:2555–2560
    [Google Scholar]
  10. Gower J. C. 1995; Some distance properties of latent root and vector methods used in multivariate analysis.. Biometrica 53:325–338
    [Google Scholar]
  11. Grimont F., Grimont P. A. D. 1986; Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools.. Ann Inst Pasteur Microbiol 137B:165–175
    [Google Scholar]
  12. Li J., Nelson K., McWhorter A. C., Whittam T. S., Selander R. K. 1994; Recombinational basis of serovar diversity in Salmonella enterica.. Proc Natl Acad Sci USA 91:2552–2556
    [Google Scholar]
  13. Maniatis T., Fritsch E. F., Sambrook J. 1982; Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory..
    [Google Scholar]
  14. Millemann Y., Lesage M.-C., Chaslus-Dancla E., Lafont J. -P. 1995; Value of plasmid profiling, ribotyping, and detection of IS200 for tracing avian isolates of Salmonella typhimurium and S . enteritidis.. J Clin Microbiol 187:157–167
    [Google Scholar]
  15. Nelson K., Selander R. K. 1992; Evolutionary genetics of the proline permease gene (putP) and the control region of the proline utilization operon in populations of Salmonella and Escherichia coli.. J Bacteriol 174:6886–6895
    [Google Scholar]
  16. Nelson K., Selander R. K. 1994; Intergeneric transfer and recombination of the 6-phosphogluconate dehydrogenase gene (gnd) in enteric bacteria.. Proc Natl Acad Sci USA 91:10227–10231
    [Google Scholar]
  17. Nelson K., Whittam T. S., Selander R. K. 1991; Nucleotide polymorphisms and evolution in the glyceraldehyde-3-phosphate dehydrogenase gene (gapA) in natural populations of Salmonella and Escherichia coli.. Proc Natl Acad Sci USA 88:6667–6671
    [Google Scholar]
  18. Olsen J. E. 1990; An improved method for rapid isolation of plasmid DNA from wild-type Gram-negative bacteria for restriction profile analysis.. Lett Appl Microbiol 10:209–212
    [Google Scholar]
  19. Olsen J. E., Skov M. 1994; Genomic lineage of Salmonella enterica serovar Dublin.. Vet Microbiol 40:271–282
    [Google Scholar]
  20. Olsen J. E., Skov M. N., Threlfall E. J., Brown D. J. 1994; Clonal lines of Salmonella enterica serotype Enteritidis documented by IS200, ribo, pulsed field gel electrophoresis and RFLP typing.. J Med Microbiol 40:15–22
    [Google Scholar]
  21. Rohlf F. J. 1993; NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System. New York: Applied Biostatistics..
    [Google Scholar]
  22. Sneath P. H. A., Sokal R. R. 1973; Numerical Taxonomy. San Francisco: Freeman..
    [Google Scholar]
  23. Stanley J., Jones C., Threlfall E. J. 1991; Evolutionary lines of S . enteritidis phage types are identified by insertion sequence IS200 distribution.. FEMS Microbiol Lett 82:83–90
    [Google Scholar]
  24. Stanley J., Chowdry N., Powell N., Threlfall E. J. 1992; Chromosomal genotypes (evolutionary lines) of Salmonella berta.. FEMS Microbiol Lett 95:247–252
    [Google Scholar]
  25. Stanley J., Baquar N., Threlfall E. J. 1993; Genotypes and phylogenetic relationships of Salmonella typhimurium are defined by molecular fingerprinting of IS200 and 16s rrn loci.. J Gen Microbiol 139:1133–1140
    [Google Scholar]
  26. Threlfall E. J., Ward L. R., Rowe B. 1983; The use of phage typing and plasmid characterization in studying the epidemiology of multi resistant Salmonella typhimurium. In Antibiotics: Assessment of Antimicrobial Activity and Resistance, pp.. 285–297 Edited by A. Russel & L. Quesnel. London: Academic Press..
    [Google Scholar]
  27. Threlfall E. J., Brown D. J., Rowe B., Ward L. R. 1990a; Occurrence of S. typhimurium DT204C in poultry in England and Wales.. Vet Rec 127:234
    [Google Scholar]
  28. Threlfall E. J., Frost J. A., Ward L. R., Rowe B. 1990b; Plasmid profile typing can be used to subdivide phage type 49 of Salmonella typhimurium in outbreak investigations.. Epidemiol Infect 104:243–251
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-4-1471
Loading
/content/journal/micro/10.1099/00221287-143-4-1471
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error