1887

Abstract

Methanotrophic bacteria were enumerated and isolated from the chemocline and surface sediments of marine-salinity Antarctic meromictic lakes located in the Vestfold Hills, Antarctica (68° S 78° E). Most probable number (MPN) analysis indicated that at the chemocline of Ace Lake the methanotroph population made up only a small proportion of the total microbial population and was sharply stratified, with higher populations detected in the surface sediments collected at the edge of Ace Lake and Burton Lake. Methanotrophs were not detected in Pendant Lake. Only a single phenotypic group of methanotrophs was successfully enriched, enumerated and isolated into pure culture from the lake samples. Strains of this group were non-motile, coccoidal in morphology, did not form resting cells, reproduced by constriction, and required seawater for growth. The strains were also psychrophilic, with optimal growth occurring at 10–13°C and maximum growth temperatures of 16–21°C. The ribulose monophosphate pathway but not the serine pathway for incorporation of C compounds was detectable in the strains. The guanine plus cytosine (G+C) content of the genomic DNA was 43–46 mol%. Whole-cell fatty acid analysis indicated that 16:18c (37–41%), 16:16c (17–19%), 16:1ω7c (15–19%) and 16:0 (14–15%) were the major fatty acids in the strains. 16S rDNA sequence analysis revealed that the strains form a distinct line of descent in the family (group I methanotrophs), with the closest relative being the Louisiana Slope methanotrophic mytilid endosymbiont (91∙8–92∙3% sequence similarity). On the basis of polyphasic taxonomic characteristics the Antarctic lake isolates represent a novel group I methanotrophic genus with the proposed name (type strain ACAM 549).

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-4-1451
1997-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/4/mic-143-4-1451.html?itemId=/content/journal/micro/10.1099/00221287-143-4-1451&mimeType=html&fmt=ahah

References

  1. Adamson D. A., Pickard J. 1986; Cainozoic history of the Vestfold Hills. In Antarctic Oasis, Terrestrial Environment and History of the Vestfold Hills, pp.. 63–97 Edited by J. Pickard. London : Academic Press..
    [Google Scholar]
  2. Ashbolt N. J. 1990; Antarctic biotechnology – what is the potential?. Aust J Biotechnol 4:103–108
    [Google Scholar]
  3. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria : 2-mercaptosulfonic acid (HSCoM)- dependent growth of Methanobacterium ruminatium. . Appl Environ Microbiol 32:782–791
    [Google Scholar]
  4. Bowman J. P., Jiménez L., Rosario I., Hazen T. C., Sayler G. S. 1993a; Characterization of the methanotrophic bacterial community present in a trichloroethylene-contaminated subsurface groundwater site.. Appl Environ Microbiol 59:2380–2387
    [Google Scholar]
  5. Bowman J. P., Sly L. I., Nichols P. D., Hayward A. C. 1993b; Revised taxonomy of the methanotrophs – description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylosinus species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs.. Int J Syst Bacteriol 43:735–753
    [Google Scholar]
  6. Bowman J. P., Sly L. I., Stackebrandt E. 1995; The phylogenetic position of the family Methylococcaceae. . Int J Syst Bacteriol 45:182–185
    [Google Scholar]
  7. Brusseau G. A., Tsien H. C., Hanson R. S. 1992; Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity.. Biodegradation 1:19–29
    [Google Scholar]
  8. Distel D. L., Cavanaugh C. M. 1994; Independent phylogenetic origins of methanotrophic and chemoautotrophic bacteria endosymbionts in marine bivalves.. J Bacteriol 176:1932–1938
    [Google Scholar]
  9. Dobson S. J., Colwell R. R., McMeekin T. A., Frantmann P. D. 1993; Direct sequencing of the polymerase chain reactionamplified 16s rRNA gene of Flavobacterium gondwanense sp. nov. and Flavobacterium salegens sp. nov., two new species from a hypersaline Antarctic lake.. Int J Syst Bacteriol 43:77–83
    [Google Scholar]
  10. Felsenstein J. 1993; phylip (phylogeny inference package), version 3.57c. Seattle : University of Washington..
    [Google Scholar]
  11. Franzmann P. D., Dobson S. J. 1993; The phylogeny of bacteria from a modern Antarctic refuge.. Antarctic Sci 5:267–270
    [Google Scholar]
  12. Franzmann P. D., Skyring G. W., Burton H. R., Deprez P. P. 1987; Sulfate reduction rates and some aspects of the limnology of four lakes and a fjord in the Vestfold Hills, Antarctica. In Biology of the Vestfold Hills, Antarctica, pp.. 25–33 Edited by J. M. Ferris, H. R. Burton, G. W. Johnstone & I. A. E. Bayly. Dordrecht: Kluwer.
    [Google Scholar]
  13. Franzmann P. D., Roberts N. J., Mancuso C. A., Burton H. R., McMeekin T. A. 1991; Methane production in meromictic Ace Lake, Antarctica.. Hydrobiologia 210:191–201
    [Google Scholar]
  14. Franzmann P. D., Springer N., Ludwig W., de Macario E. C., Rohde M. 1992; Methanogenic archaeon from Ace Lake, Antarctica : Methanococcoides burtonii sp. nov.. Syst Appl Microbiol 15:573–581
    [Google Scholar]
  15. Galchenko V. F. 1994; Sulfate reduction, methane production and methane oxidation in various water bodies of the Bunger Hills Oasis of Antarctica.. Microbiology (English translation of Mikrobiologiya) 63:388–396
    [Google Scholar]
  16. Gibson J. A. E., Garrick R. C., Franzmann P. D., Deprez P. P., Burton H. R. 1991; Reduced sulfur gases in saline lakes of the Vestfold Hills, Antarctica.. Palaeogeogr Palaeoclimat Paleoecol 84:131–140
    [Google Scholar]
  17. Guezennec J. , Fiala-Medioni A. 1996; Bacterial abundance and diversity in the Barbados Trench determined by phospholipid analysis.. FEMS Microbiol Ecol 19:83–93
    [Google Scholar]
  18. Hanson R. S., Hanson T. E. 1996; Methanotrophic bacteria. Microbiol Rev 60:439–471
    [Google Scholar]
  19. Holmes A. J., Owens N. J. P., Murrell J. C. 1995; Detection of novel marine methanotrophs using phylogenetic and functional gene probes after methane enrichment.. Microbiology 141:1947–1955
    [Google Scholar]
  20. Huss V. A. R., Festl H., Scleifer K.-H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates.. Syst Appl Microbiol 4:184–192
    [Google Scholar]
  21. Koch A. L. 1994; Growth measurement. In Methods for General and Molecular Bacteriology, pp.. 248–277 Edited by R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology..
    [Google Scholar]
  22. Lees V., Owens N. J. P., Murrell J. C. 1991; Nitrogen metabolism in marine methanotrophs.. Arch Microbiol 157:60–65
    [Google Scholar]
  23. Lidstrom M. E. 1988; Isolation and characterization of marine methanotrophs.. Antonie Leeuwenhoek 54:189–199
    [Google Scholar]
  24. Mancuso C. A., Franzmann P. D., Burton H. R., Nichols P. D. 1991; Microbial community structure and biomass estimates of a methanogenic Antarctic lake ecosystem as determined by phospholipid analyses.. Microb Ecol 19:73–95
    [Google Scholar]
  25. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature.. J Mol Biol 5:109–118
    [Google Scholar]
  26. Murrell J. C., Dalton H. 1983; Nitrogen fixation in obligate methanotrophs.. J Gen Microbiol 129:1197–1206
    [Google Scholar]
  27. Nichols P. D., Smith G. A., Antworth, C. P., Hanson R. S., White D. C. 1985; Phospholipid and lipopolysaccharide normal and hydroxy fatty acids as potential signatures for methaneoxidizing bacteria.. FEMS Microbiol Ecol 32:327–335
    [Google Scholar]
  28. Nichols P. D., Guckert J. B., White D. C. 1986; Determination of monounsaturated bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyldisulfide adducts.. J Microbiol Methods 5:49–55
    [Google Scholar]
  29. Nichols D. S., Nichols P. D., McMeekin T. A. 1993; Polyunsaturated fatty acids in Antarctic bacteria.. Antarctic Sci 5:149–160
    [Google Scholar]
  30. Omelchenko M. V., Vasileva L. V., Zavarzin G. A., Saveleva N. D., Lysenko A. M., Mityushina L. L., Khmelenina V. N., Trotsenko Y. A. 1996; A novel psychrophilic methanotroph of the genus Methylobacter.. Microbiology (English translation of Mikrobiologiya) 65:339–343
    [Google Scholar]
  31. Sieburth J. M., Johnson P. W., Eberhardt M. A., Sieracki M. E., Lidstrom M. E., Laux D. 1987; The first methane-oxidizing bacterium from the upper mixing layer of the deep ocean: Methylomonas pelagica sp. nov.. Curr Microbiol 14:285–293
    [Google Scholar]
  32. Sly L. I., Blackall L. L., Kraat P. C., Tian-Shen T., Sangkhobol V. 1986; The use of second derivative plots for the determination of mol % guanine plus cytosine of DNA by the thermal denaturation method.. J Microbiol Methods 5:139–156
    [Google Scholar]
  33. Takeda K. 1988; Characteristics of a nitrogen-fixing methanotroph, Methylocystis T-1.. Antonie Leeuwenhoek 54:521–534
    [Google Scholar]
  34. Vela G. R., Wyss O. 1964; Improved stain for the visualization of Azotobacter encystment.. J Bacteriol 87:476–477
    [Google Scholar]
  35. Vela B. B., Kilpatrick K. A., Novell P. C., Scranton M. I. 1987; Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters.. Nature 327:226–229
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-4-1451
Loading
/content/journal/micro/10.1099/00221287-143-4-1451
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error