1887

Abstract

The effects of two extraction procedures on the yield and properties of APPL (acid-preciμltable polymeric lignin, or solubilized lignocellulose) produced by four streptomycetes during growth in solid-state fermentation were examined. When APPL was extracted with NaOH (0.1 M) rather than distilled water, yields increased threefold, with exhibiting maximum solubilization levels [163 mg product (g straw)]. Alterations in the characteristics of APPL obtained during extraction with NaOH were detected using cross-polarization and magic-angle sμlnning (CPMAS) C NMR and IR spectroscopy and by GC-MS analysis after CuO oxidation, with the most significant changes detected in the cinnamic acid and lignin moieties. When APPL was extracted with NaOH, ester links between hemicellulose and lignin and between hemicellulose and cinnamic acid were cleaved, resulting in a decrease in the alkyl and carbonyl groups attached to lignin, enabling greater solubilization. Yields of APPL extracted with water were lower, but spectral characterization of this APPL suggested a possible role for actinomycete peroxidases and phenolic acid esterases in lignin solubilization. For industrial solubilization of lignocellulose, a possible role for the application of streptomycetes, or their enzymes, in alkali extraction is suggested as a means of increasing solubilization levels.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-4-1359
1997-04-01
2021-05-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/4/mic-143-4-1359.html?itemId=/content/journal/micro/10.1099/00221287-143-4-1359&mimeType=html&fmt=ahah

References

  1. Almendros G., Martlnez A. T., González A. E., González-Vila F. J., Fründ R., Lüdemann H.-D. 1992; CPMAS 13C NMR study of lignin preparations from wheat straw transformed by five lignocellulose-degrading fungi.. J Agric Food Chem 40:1297–1302.
    [Google Scholar]
  2. Ball A. S., Godden B., Helvenstein P., Penninckx M. J., McCarthy A. J. 1990; Lignocarbohydrate solubilization from wheat straw by actinomycetes.. Appl Environ Microbiol 56:3017–3022.
    [Google Scholar]
  3. Berrocal M., Hernández-Coronado M., Hernández M., Huerta S., Rodriguez J., Copa-Patiño J., Soliveri J., Pérez-Leblic M. I., Arias M. E. 1996; Chemical characterization of wheat straw transformed by selected Streptomyces strains and lignin related enzymes production in SSF process. In Biotechnology in the Pulp and Paper lndustry: Advances in Applied and Fundamental Research, Edited by E. Srebotnik & K. Messner. Vienna:. Facultas-Universitatsverlag.569–572.
    [Google Scholar]
  4. Billa E., Monties B. 1995; Molecular variability of lignin fractions isolated from wheat straw.. Res Chem lntermed 21:303–311.
    [Google Scholar]
  5. Borgmeyer J. R., Crawford D. L. 1985; Production and characterization of polymeric lignin degradation intermediates from two different Streptomyces spp.. Appl Environ Microbiol 49:273–278.
    [Google Scholar]
  6. Chang H.-M., Allan G. G. 1971; Oxidation. In Lignins: Occurrence, Formation, Structure and Reactions, Edited by K. V. Sarkanen & C. H. Ludwing.. New York: Wiley.433–485.
    [Google Scholar]
  7. Christov L. P., Prior B. A. 1993; Esterases of xylan-degrading microorganisms: production, properties and significance.. Enzyme Micro6 Techno1 15:460–475.
    [Google Scholar]
  8. Crawford D. L. 1978; Lignocellulose decomposition by selected Streptomyces strains.. Appl Environ Microbiol 35:1041–1045.
    [Google Scholar]
  9. Crawford D. L., Pometto A. L. III. 1988; Acid-precipitable polymeric lignin: production and analysis.. Methods Enzymol 161:35–47.
    [Google Scholar]
  10. Crawford D. L., Barder M. J., Pometto A. L. III, Crawford R. L. 1982; Chemistry of softwood lignin degradation by Streptomyces viridosporus. . Arch Microbiol 131:140–145.
    [Google Scholar]
  11. Crawford D. L., Pometto A. L. III, Crawford R. L. 1983; Lignin degradation by Streptomyces viridosporus: isolation and characterization of a new polymeric lignin degradation intermediate.. Appl Environ Microbiol 45:898–904.
    [Google Scholar]
  12. Dart R. K., Betts W. B. 1991; Uses and potential of lignocellulose. In Biodegradation: Natural and Synthetic Materials, Edited by W. B. Betts. London:. Springer-Verlag.201–217.
    [Google Scholar]
  13. Deobald L. A., Crawford D. L. 1987; Activities of cellulase and other extracellular enzymes during lignin solubilization by Streptomyces viridosporus. . Appl Microbiol Biotechnol 26:158–163.
    [Google Scholar]
  14. Donnelly P. K., Crawford D. L. 1988; Production by Streptomyces viridosporus T7A of an enzyme which cleaves aromatic acids from lignocellulose.. Appl Environ Microbiol 54:2237–2244.
    [Google Scholar]
  15. Effland M. J. 1977; Modified procedure to determine acidinsoluble lignin in wood and pulp.. Tappi 60:143–144.
    [Google Scholar]
  16. Fengel D., Wegener G. 1984; Wood: Chemistry, Ultrastructure, Reactions. Berlin & New York:. Walter de Gruyter.
    [Google Scholar]
  17. Fidalgo M. L., Terrón M. C., González A. E., Martinez A. T., González-Vila F. J., Galletti G. C. 1993; Comparative study of fractions from alkaline extraction of wheat straw through chemical degradation, analytical pyrolysis and spectroscopic techniques.. J Agric Food Chem 41:1621–1626
    [Google Scholar]
  18. Gamble G. R., Sethuraman A., Akin D. E., Eriksson K.-E. L. 1994; Biodegradation of lignocellulose in bermuda grass by white rot fungi analyzed by solid-state 13C nuclear magnetic resonance.. Appl Environ Microbiol 60:3138–3144
    [Google Scholar]
  19. Goñi M. A., Hedges J. I. 1992; Lignin dimers: structures, distribution and potential geochemical applications.. Geochim Cosmochim Acta 56:4025–4043
    [Google Scholar]
  20. Hartley R. D. 1972; p-Coumaric and ferulic acid components of cell walls of ryegrass and their relationships with lignin and digestibility.. J Sci Food Agric 23:1347–1354
    [Google Scholar]
  21. Hartley B. S., Broda P., Senior P. 1987; Technology in the 1990s - Utilisation of Lignocellulosic Wastes. London:. The Royal Society.
    [Google Scholar]
  22. Hedges J. I., Ertel J. R. 1982; Characterization of lignin by gas capillary chromatography cupric oxide oxidation products.. Anal Chem 54:174–178
    [Google Scholar]
  23. Iiyarna K., Lam T. B., Stone B. A. 1990; Phenolic acid bridges between polysaccharides and lignin in wheat internodes.. Phytochem 29:733–737
    [Google Scholar]
  24. Jeffries T. W. 1990; Biodegradation of lignin-carbohydrate complexes.. Biodegradation 1:163–176
    [Google Scholar]
  25. Lapierre C., Monties B. 1989; Structural information gained from the thioacidolysis of grass lignins and their relation with alkali solubility. In TAPPI Proceedings of the International Symposium on Wood and Pulp Chemistry, Raleigh, Atlanta, GA:. Tappi Press.615–621
    [Google Scholar]
  26. Lüdernanne H. D., Nimz h. 1973; Carbon-13 nuclear magnetic resonance spectra of lignins.. Biochem Biophys Res Commun 52:1162–1169
    [Google Scholar]
  27. Maciel G. E., Haw J. F., Smith D. H., Gabrielsen B. C., Hatfield G. R. 1985; Carbon-13 nuclear magnetic resonance of herbaceous plants and their components, using cross polarization and magic-angle spinning.. J Agric Food Chem 33:185–191
    [Google Scholar]
  28. McCarthy A. J. 1987; Lignocellulose-degrading actinomycetes.. FEMS Microb Rev 46:145–163
    [Google Scholar]
  29. McCarthy A. J., Paterson A., Broda P. 1986; Lignin solubilization by Thermomonospora mesophila.. Appl Microbiol Biotechnol 24:347–352
    [Google Scholar]
  30. Mueller-Harvey I., Hartley R. D., Harris P. J., Curzon E. H. 1986; Linkage of p-coumaroyl and feruloyl groups to cell-wall polysaccharides of barley straw.. Carbohydr Res 148:71–85.
    [Google Scholar]
  31. Pasti M. B., Pometto A. L. III., Nuti M. P., Crawford D. L. 1990; Lignin-solubilizing ability of actinomycetes isolated from termite gut.. Appl Environ Microbiol 56:2213–2218.
    [Google Scholar]
  32. Ramachandra M., Crawford D. L., Hertel G. 1988; Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus.. Appl Environ Microbiol 54:3057–3063.
    [Google Scholar]
  33. Reeves J. B. III, Schmidt W. F. 1994; Solid-state 13C NMR analysis of forage and byproduct-derived fiber and lignin residues. Resolution of some discrepancies among chemical, infrared, and pyrolysis-gas chromatography-mass spectroscopic analyses.. J Agric Food Chem 42:1462–1468.
    [Google Scholar]
  34. Scalbert A., Monties B., Lallemand J. Y., Guittet E., Rolando C. 1994; Ether linkage between phenolic acids and lignin fractions from wheat straw.. Phytochemistry 24:1359–1362.
    [Google Scholar]
  35. Scalbert A., Monties B., Lallemand J. Y., Guittet E. 1986; Comparison of wheat straw lignin preparations. I. Chemical and spectroscopic characterization.. Holzforschung 40:119–127.
    [Google Scholar]
  36. Seelenfreund D., Vicuña R., Lapierre C. 1990; Production of soluble lignin-rich fragments (APPL) from wheat lignocellulose by Streptomyces viridosporus and their partial metabolism by natural bacterial isolates.. J Biotechnol 13:145–158.
    [Google Scholar]
  37. Trigo C., Ball A. S. 1994; Is the solubilized product from the degradation of lignocellulose by actinomycetes a precursor of humic substances?. Microbiology 140:3145–3152.
    [Google Scholar]
  38. Winter B., Fiechter A., Zimmermann W. 1991; Degradation of organochlorine compounds in spent sulfite bleach plant effluents by actinomycetes.. Appl Environ Microbiol 57:2858–2863.
    [Google Scholar]
  39. Xiao-An L., Zhong-Zheng L., Die-Sheng T. 1989; Fractional studies on the characteristics of high alkali-soluble lignins of wheat straw.. Cellulose Chem Techno1 23:559–575.
    [Google Scholar]
  40. Zhou W., Winter B., Zimmermann W. 1993; Dechlorination of high molecular mass compounds in spelt sulfite bleach effluents by free and immobilized cells of Streptomyces.. Appl Microbiol Biotechnol 39:418–423.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-4-1359
Loading
/content/journal/micro/10.1099/00221287-143-4-1359
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error