1887

Abstract

of controlling competence gene expression and survival under stress conditions, is encoded by the fourth gene of a six-gene operon. The product of contains a potential helix-turn-helix motif, but shows no significant similarities with known protein sequences. The second and third genes encode proteins with similarities to zinc-finger proteins () and arginine kinases (), respectively. The product of contains a zinc-finger motif and an ATP-binding domain, and is highly similar to the product of the gene. A strain bearing a disruption of showed increased sensitivity to the alkylating agent methyl methanesulfonate. Furthermore, this mutant strain displayed decreased capacity for genetic recombination as measured by transformation experiments. The last open reading frame, encodes a protein with limited similarity in its C-terminal part to the gene product and to the UvrC DNA repair excinuclease. Inactivation of resulted in strongly diminished transformation with all types of DNA. Mutations affecting either or resulted in strains with decreased resistance to UV-irradiation in the stationary phase, indicating that these proteins play a role in the development of a nonspecific stationary-phase resistance to UV-irradiation. Moreover, these results suggest an involvement of both proteins in transformation and presumably in DNA repair.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-4-1309
1997-04-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/4/mic-143-4-1309.html?itemId=/content/journal/micro/10.1099/00221287-143-4-1309&mimeType=html&fmt=ahah

References

  1. Albano M., Hahn J., Dubnau D. 1987; Expression of competence genes in Bacillus subtilis.. J Bacteriol 169:3110–3117.
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool.. J Mol Biol 215:403–410.
    [Google Scholar]
  3. Antelmann H., Engelmann S., Schmid R., Hecker M. 1996; General and oxidative stress responses in Bacillus subtilis: cloning, expression, and mutation of the alkyl hydroperoxide reductase operon.. J Bacteriol 178:6571–6578.
    [Google Scholar]
  4. Bol D., Yasbin R. 1994; Analysis of the dual regulatory mechanisms controlling expression of the vegetative catalase gene of Bacillus subtilis.. J Bacteriol 175:6744–6748.
    [Google Scholar]
  5. Bolivar F., Rodrigues R. L., Greener P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. 1977; Construction and characterization of new cloning vehicles. II. A multipurpose cloning system.. Gene 2:95–133.
    [Google Scholar]
  6. Bukau B. 1993; Regulation of the Escherichia coli heat shock response.. Mol Microbiol 9:671–680.
    [Google Scholar]
  7. Chen L., Keramati L., Hellman J. D. 1995; Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions.. Proc Natl Acad Sci USA 92:8190–8194.
    [Google Scholar]
  8. Cheo D. L., Bayles K. W., Yasbin R. E. 1993; Elucidation of regulatory elements that control damage induction and competence induction of the Bacillus subtilis SOS system.. J Bacteriol 175:5907–5915.
    [Google Scholar]
  9. Dodd I. B., Egan J. B. 1990; Improved detection of helixturn-helix DNA-binding motifs in protein sequences.. Nucleic Acids Res 18:5019–5026.
    [Google Scholar]
  10. Dubnau D. 1991; Genetic competence in Bacillus subtilis.. Microbiol Rev 55:395–424.
    [Google Scholar]
  11. Dubnau D., Roggiani M. 1990; Growth medium-independent genetic competence mutants of Bacillus subtilis.. J Bacteriol 172:4048–4055.
    [Google Scholar]
  12. Dubnau D., Hahn J., Roggiani M., Piazza F., Weihrauch Y. 1994; Two-component regulators and genetic competence in Bacillus subtilis.. Res Microbiol 145:403–411.
    [Google Scholar]
  13. Dumas C., Camonis J. 1993; Cloning and sequence analysis of the cDNA for arginine kinase of lobster muscle.. J Biol Chem 268:21599–21605.
    [Google Scholar]
  14. Engelmann S., Hecker M. 1996; Impaired oxidative stress resistance of Bacillus subtilis sigB mutants and the role of katA and katE.. FEMS Microbiol Lett 145:63–69.
    [Google Scholar]
  15. Engelmann S., Lindner C., Hecker M. 1995; Cloning, nucleotide sequence, and regulation of katE encoding a σB-dependent catalase in Bacillus subtilis.. J Bacteriol 177:5598–5605.
    [Google Scholar]
  16. Friedman B. M., Yasbin R. E. 1983; The genetics and specificity of the constitutive excision repair system of Bacillus subtilis.. Mol Gen Genet 190:481–486.
    [Google Scholar]
  17. Gärtner D., GeiBendörfer M., Hillen W. 1988; Expression of the B. subtilis xyl operons repressed at the level of transcription and is induced by xylose.. J Bacteriol 170:3102–3109.
    [Google Scholar]
  18. Hahn J., Inamine G., Kozlov Y., Dubnau D. 1993; Characterization of comE, a late competence operon of Bacillus subtilis required for the binding and uptake of transforming DNA.. Mol Microbiol 10:99–111.
    [Google Scholar]
  19. Haldenwang W. G. 1995; The sigma factors of Bacillus subtilis.. Microbiol Rev 59:1–30.
    [Google Scholar]
  20. Hanahan D. 1985; Techniques for transformation of Escherichia coli. In DNA Cloning: a Practical Approach, Edited by D. M. Glover. Oxford:. IRL Press. 1:109–135.
    [Google Scholar]
  21. Hecker M., Schumann W., Vöker U. 1996; Heat shock and general stress response in Bacillus subtilis.. Mol Microbiol 19:417–428.
    [Google Scholar]
  22. Hengge-Aronis R. 1993; Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli K12.. cell 72:165–168.
    [Google Scholar]
  23. Henner D. J. 1990; Inducible expression of regulatory genes in Bacillus subtilis.. Methods Enzymol 185:223–228.
    [Google Scholar]
  24. Hoch J. A. 1991; Genetic analysis in Bacillus subtilis.. Methods Enzymol 204:305–320.
    [Google Scholar]
  25. Inamine G. S., Dubnau D. 1995; ComEA, a Bacillus subtilis integral membrane protein required for genetic transformation, is needed for both DNA binding and transport.. J Bacteriol 177:3045–3051.
    [Google Scholar]
  26. Klug A., Rhodes D. 1987; ‘Zinc fingers’: a novel protein motif for nucleic acid recognition.. Trends Biochem Sci 12:464–469.
    [Google Scholar]
  27. Kong L., Dubnau D. 1994; Regulation of competence-specific gene expression by Mec-mediated protein-protein interaction in Bacillus subtilis.. Proc Natl Acad Sci USA 91:5793–5797.
    [Google Scholar]
  28. Krüger E., Völker U., Hecker M. 1994; Stress induction of clpC in Bacillus subtilis and its involvement in stress tolerance.. J Bacteriol 176:3360–3367.
    [Google Scholar]
  29. Krüger E., Msadek T., Hecker M. 1996; Alternate promoters direct stress induced transcription of the Bacillus subtilis clpC operon.. Mol Microbiol 20:713–723.
    [Google Scholar]
  30. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein.. J Mol Biol 157:105–132.
    [Google Scholar]
  31. Lereclus D., Arantes O. 1992; spbA locus ensures the segregational stability of pHT1030, a novel type of Gram-positive replicon.. Mol Microbiol 6:35–46.
    [Google Scholar]
  32. Msadek T., Kunst F., Klier A., Rapoport G. 1991; DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ.. J Bacteriol 173:2366–2377.
    [Google Scholar]
  33. Msadek T., Kunst F., Rapoport G. 1994; MecB of Bacillus subtilis, a member of the ClpC ATPase family, is a pleiotropic regulator controlling competence gene expression and survival at high temperature.. Proc Natl Acad Sci USA 91:5788–5792.
    [Google Scholar]
  34. Msadek T., Kunst F., Rapoport G. 1995; A signal transduction network in Bacillus subtilis includes the DegS/DegU and ComP/ComA two-component systems. In Two-component Signal Transduction, Edited by J. A. Hoch & T. J. Silhavy. Washington, DC:. American Society for Microbiology.447–471.
    [Google Scholar]
  35. Murphy E. 1985; Nucleotide sequence of a spectinomycin adenyl transferase AAD(9) determinant from Staphylococcus aureus and its relationship to AAD(3”) (9). Mol Gen Genet 200:33–39.
    [Google Scholar]
  36. Neuwald A. F., Berg D. E., Stauffer G. V. 1992; Mutational analysis of the Escherichia coli serB promoter region reveals transcriptional linkage to a downstream gene.. Gene 120:1–9.
    [Google Scholar]
  37. Ogasawara N., Nakai S., Yoshikawa H. 1994; Systematic sequencing of the 180 kilobases region of the Bacillus subtilis chromosome containing the replication origin.. DNA Res 1:1–14.
    [Google Scholar]
  38. Rouquette C., Ripio M.-T., Pellegrini E., Bolla J.-M., Tascon R. I., Vázquez-Boland J. -A., Berche P. 1996; Identification of a ClpC ATPase required for stress tolerance and in vivo survival of Listeria monocytogenes.. Mol Microbiol 21:977–987.
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY:. Cold Spring Harbor Laboratory.
    [Google Scholar]
  40. Sancar G. B., Sancar A., Rupp W. D. 1984; Sequence of the E. coli uvrC gene and protein.. Nucleic Acids Res 12:4593–4608.
    [Google Scholar]
  41. Sanger F. S., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors.. Proc Natl Acad Sci USA 74:5463–5467.
    [Google Scholar]
  42. Smith I., Paress P., Cabane K., Dubnau E. 1980; Genetics and physiology of the re1 system of Bacillus subtilis.. Mol Gen Genet 178:271–279.
    [Google Scholar]
  43. Stein L. D., Harn D. A., David J. R. 1990; A cloned ATP : guanidino kinase in the trematode Schistosoma mansoni has a novel duplicated structure.. J Biol Chem 265:6582–6588.
    [Google Scholar]
  44. Stüilke J., Hanschke R., Hecker M. 1993; Temporal activation of β-glucanase synthesis in Bacillus subtilis is mediated by the GTP pool.. J Gen Microbial 139:2041–2045.
    [Google Scholar]
  45. Vallee B. L., Coleman J., Auld D. S. 1991; Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains.. Proc Natl Acad Sci USA 88:999–1003.
    [Google Scholar]
  46. Walker J. E., Saraste M., Runswick M. J., Gay N. J. 1982; Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold.. EMBO J 1:945–951.
    [Google Scholar]
  47. Yansura D. G., Henner D. J. 1984; Use of the Escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis.. Proc Natl Acad Sci USA 81:439–443.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-4-1309
Loading
/content/journal/micro/10.1099/00221287-143-4-1309
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error