The temperature sensitivity of DB1005 is due to insufficient activity, rather than insufficient concentration, of the mutant σ factor Free

Abstract

The σ factor of DB1005 contains two amino acid substitutions (1198A and 1202A) in the promoter –10 binding region. It has been confirmed that this σ factor is responsible for the temperature sensitivity of DB1005. An investigation was conducted into how the mutantσ could cause temperature-sensitive (Ts) cell growth by analysing its structural stability, cellular concentration and transcriptional activity. The mutant σ was unstable even at the permissive temperature of 37°C (t 59 min), whereas the wild-type counterpart was fairly stable under the same conditions ( 600 min). However, neither wild-type σ nor mutant σ was stable at 49°C ( 34 min and 23 min, respectively). Analyses of the rates of σ synthesis revealed that DB1005 was able to compensate for unstable σ by elevating the level of σ at 37°C but not at 49°C. Moreover, overexpression of the mutant σ at 49°C could not suppress the Ts phenotype of DB1005. This indicates that the temperature sensitivity of DB1005 is not due to insufficient σ concentration in the cell. The greater decline of an already reduced activity of the mutant σ at 49°C suggests that the temperature sensitivity of DB1005 is instead the result of a very low activity of σ probably below a critical level necessary for cell growth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-4-1299
1997-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/4/mic-143-4-1299.html?itemId=/content/journal/micro/10.1099/00221287-143-4-1299&mimeType=html&fmt=ahah

References

  1. Arnosti D. N., Singer V. L., Chamberlin M. J. 1986; Characterization of heat shock in Bacillus subtilis.. J Bacteriol 168:1243–1249
    [Google Scholar]
  2. Brennan R. G., Matthews B. W. 1989; The helix–turn–helix DNA-binding motif.. J Biol Chem 264:1903–1906
    [Google Scholar]
  3. Burgess R. R., Travers A. A., Dunn J. J., Bautz E. K. F. 1969; Factor stimulating transcription by RNA polymerase.. Nature 221:43–46
    [Google Scholar]
  4. Chak K. F., de Lencastre H., Liu H.-M., Piggot P. J. 1982; Facile in vivo transfer of mutations between the Bacillus subtilis chromosome and a plasmid harbouring homologous DNA.. J Gen Microbiol 128:2813–2816
    [Google Scholar]
  5. Chang B.-Y., Doi R. H. 1990; Overproduction, purification, and characterization of the Bacillus subtilis RNA polymerase σA factor.. J Bacteriol 172:3257–3263
    [Google Scholar]
  6. Chang B.-Y., Doi R. H. 1993a; Conformational properties of the Bacillus subtilis RNA polymerase σA factor during transcription initiation.. Biocbem J 294:43–47
    [Google Scholar]
  7. Chang B.-Y., Doi R. H. 1993b; Effects of amino acid substitutions in the promoter –10 binding region of the σA factor on growth of Bacillus subtilis.. J Bacteriol 175:2470–2474
    [Google Scholar]
  8. Chang B.-Y., Chen K.-Y., Wen Y.-D., Liao C.-T. 1994; The response of a Bacillus subtilis temperature-sensitive sigA mutant to heat stress.. J Bacteriol 176:3102–3110
    [Google Scholar]
  9. Daniels D., Zuber P., Losick R. 1990; Two amino acids in an RNA polymerase σ factor involved in the recognition of adjacent base pairs in the –10 region of the cognate promoter.. Proc Natl Acad Sci USA 87:8075–8079
    [Google Scholar]
  10. Davison B. L., Leighton T. J., Rabinowitz J. C. 1979; Purification of Bacillus subtilis RNA polymerase with heparin agarose.. J Biol Chem 254:9220–9226
    [Google Scholar]
  11. Davison B. L., Murray C. L., Rabinowitz J. C. 1980; Purification of Bacillus subtilis RNA polymerase with heparin agarose.. J Biol Chem 255:8819–8830
    [Google Scholar]
  12. Fukuda R., Doi R. H. 1977; Two polypeptides associated with the ribonucleic acid polymerase core of Bacillus subtilis during sporulation.. J Bacteriol 129:422–432
    [Google Scholar]
  13. Gardella T., Moyle H., Susskind M. M. 1989; A mutant Escherichia coli σ70 subunit of RNA polymerase with altered promoter specificity.. J Mol Biol 206:579–590
    [Google Scholar]
  14. Grossman A. D., Burgess R. R., Walter W. A., Gross C. A. 1983; Mutations in the Ion gene of E. coli K12 phenotypically suppress a mutation in the sigma subunit of RNA polymerase.. Cell 32:151–159
    [Google Scholar]
  15. Hailing S. M., Sanchez-Anzaldo F. J., Fukuda R., Doi R. H., Meares C. F. 1977; Zinc is associated with the β subunit of DNA-dependent RNA polymerase of Bacillus subtilis.. Biochemistry 16:2880–2884
    [Google Scholar]
  16. He X.-S., Shu T.-S., Fukuda R., Doi R. H. 1991; Construction and use of a Bacillus subtilis mutant deficient in multiple protease genes for the expression of eucaryotic genes.. Ann NY Acad Sci 646:60–77
    [Google Scholar]
  17. Helmann J. D., Chamberlin M. J. 1988; Structure and function of bacterial sigma factor.. Annu Rev Biochem 57:839–872
    [Google Scholar]
  18. hicks K. A., Grossman A. D. 1995; Characterization of csh203::Tn917lac, a mutation in Bacillus subtilis that makes the sporulation sigma factor sigma-H essential for normal vegetative growth.. Annu Rev Biochem 177:3736–3742
    [Google Scholar]
  19. Iglesias A., Trautner T. A. 1983; Plasmid transformation in Bacillus subtilis: symmetry of gene conversion in transformation of a hybrid plasmid containing chromosomal DNA.. Mol Gen Genet 189:73–76
    [Google Scholar]
  20. Kahn D., Ditta G. 1991; Modular structure of FixJ: homology of the transcriptional activator domain with the –35 binding domain of sigma factor.. Mol Microbiol 5:987–997
    [Google Scholar]
  21. Kenney T. J., Moran C. P. 1991; Genetic evidence for interaction of σA with two promoters in Bacillus subtilis.. J Bacteriol 173:3282–3290
    [Google Scholar]
  22. Kenney T. J., York K., Youngman P., Moran C. P. 1989; Genetic evidence that RNA polymerase associated with σA uses a sporulation-specific promoter in Bacillus subtilis.. Proc Natl Acad Sci USA 86:9109–9113
    [Google Scholar]
  23. Kiode Y., Nakamura A., Uozumi T., Beppu T. 1986; Cloning and sequencing of the major intracellular serine protease gene of Bacillus subtilis.. J Bacteriol 167:110–116
    [Google Scholar]
  24. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4.. Nature 227:680–685
    [Google Scholar]
  25. Leighton T. J., Doi R. H. 1971; The stability of messenger ribonucleic acid during sporulation in Bacillus subtilis.. J Biol Chem 246:3189–3195
    [Google Scholar]
  26. Li M., Wang S.-L. 1992; Cloning and characterization of the groESL operon from Bacillus subtilis.. J Bacteriol 174:3981–3992
    [Google Scholar]
  27. Liebke H., Gross C. A., Walter W. A., Burgess R. R. 1980; A new mutation, rpoD800, affecting the sigma subunit of E. coli RNA polymerase is allelic to two other sigma mutants.. Mol Gen Genet 177:277–282
    [Google Scholar]
  28. Lonetto M., Gribskov M., Gross C. A. 1992; The σ70 family: sequence conservation and evolutionary relationships.. J Bacteriol 174:3843–3849
    [Google Scholar]
  29. Miller J. H. 1972; Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory..
    [Google Scholar]
  30. Qi F.-X. 1990; Regulation of the sigA operon and its function during sporulation of Bacillus subtilis. PhD thesis. University of California, Davis..
    [Google Scholar]
  31. Qi F.-X., He X.-S., Doi R. H. 1991; Localization of a new promoter, P5, in the sigA operon of Bacillus subtilis and its regulation in some spore mutant strains.. J Bacteriol 173:7050–7054
    [Google Scholar]
  32. Schmidt A., Schiesswohl M., Volker U., Hecker M., Schumann W. 1992; Cloning, sequencing, mapping, and transcriptional analysis of the groESL operon from Bacillus subtilis.. J Bacteriol 174:3993–3999
    [Google Scholar]
  33. Siegele D.A., Hu J.-C., Walter W. A, Gross C. A. 1989; Altered promoter recognition by mutant forms of the σ70 subunit of Escherichia coli RNA polymerase.. J Mol Biol 206:591–603
    [Google Scholar]
  34. Spizizen J. 1958; Transformation of biochemically different strains of Bacillus subtilis by deoxyribonucleate.. Proc Natl Acad Sci USA 44:1072–1078
    [Google Scholar]
  35. Tabor S. 1990; Expression using the T7 RNA polymerase/ promoter system. In Current Protocols in Molecular Biology, pp.. 16.2.1–16.2.11 Edited by F. A. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Greene Publishing & Wiley Interscience..
    [Google Scholar]
  36. Tatti K. M., Jones C. H., Moran C. P. 1991; Genetic evidence for interaction of σE with the spoIIID promoter in Bacillus subtilis.. J Bacteriol 173:7828–7833
    [Google Scholar]
  37. Taylor W. E., Straus D. B., Grossman A. D., Burton Z. F., Gross C. A., Burgess R. R. 1984; Transcription from a heat-inducible promoter causes heat shock regulation of the sigma subunit of E. coli RNA polymerase.. Cell 38:371–381
    [Google Scholar]
  38. Waldburger W. E., Straus C., Gardella T., Wong R., Susskind M. M. 1990; Changes in conserved region 2 of Escherichia coli σ70 affecting promoter recognition.. J Mol Biol 215:267–276
    [Google Scholar]
  39. Wang L.-F., Doi R. H. 1986; Nucleotide sequence and organization of Bacillus subtilis RNA polymerase major sigma (σ43) operon.. Nucleic Acids Res 14:4293–4307
    [Google Scholar]
  40. Wang L.-F., Doi R. H. 1987; Promoter switching during development and termination site of the σ43 operon of Bacillus subtilis.. Mol Gen Genet 207:114–119
    [Google Scholar]
  41. Yuan G., Wong S.-L. 1995; Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK.. J Bacteriol 177:6462–6468
    [Google Scholar]
  42. Zuber P., Healy J., Carter H. L., Cutting S., Moran C. P., Losick R. 1989; Mutation changing the specificity of an RNA polymerase sigma factor.. J Mol Biol 206:605–614
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-4-1299
Loading
/content/journal/micro/10.1099/00221287-143-4-1299
Loading

Data & Media loading...

Most cited Most Cited RSS feed