1887

Abstract

The glycerol facilitator is one of the few known examples of bacterial solute transport proteins that catalyse facilitated diffusion across the cytoplasmic membrane. A second protein, glycerol kinase, is involved in entry of external glycerol into cellular metabolism by trapping glycerol in the cytoplasm as -glycerol 3-phosphate. Evidence is presented that glycerol transport in is mediated by a similar transport system. The genes encoding the glycerol facilitator, and glycerol kinase, were isolated on a 4.5 kb fragment from a chromosomal mini-library by functional complementation of an mutant after establishing a map of the chromosomal region with the help of a PCR-amplified segment. The nucleotide sequence revealed that is the promoter-proximal gene of the operon. The glycerol facilitator and glycerol kinase were identified in a T7 expression system as proteins with apparent molecular masses of 25 and 56 kDa, respectively. The identities of the glycerol facilitator and glycerol kinase amino acid sequences with their counterparts from were 70 and 81%, respectively; this similarity extended to two homologues in the genome sequence of A chromosomal δ mutant was isolated by gene replacement. This mutant no longer transported glycerol and could no longer utilize it as sole carbon and energy source. Two ORFs, and encoding a putative regulatory protein and a carbohydrate kinase of unknown function, were located upstream of the operon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-4-1287
1997-04-01
2021-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/4/mic-143-4-1287.html?itemId=/content/journal/micro/10.1099/00221287-143-4-1287&mimeType=html&fmt=ahah

References

  1. Aerts T., Xia J. -Z., Siegers H., de Block J., Cauwaert J. 1990; Hydronamic characterization of the major intrinsic protein from the bovine lens fiber membranes.. J Biol Chem 265:8675–8680
    [Google Scholar]
  2. Baker M. E., Saier M. H., Jr. 1990; A common ancestor for bovine lens fiber major intrinsic protein, soybean nodulin, and E. coli glycerol facilitator.. Cell 60:185–186
    [Google Scholar]
  3. Bensing B. A., Dunny G. M. 1993; Cloning and molecular analysis of genes affecting expression of binding substance, the recipient-encoded receptor(s) mediating mating aggregate formation in Enterococcus faecalis.. J Bacteriol 175:7421–7429
    [Google Scholar]
  4. Berka R. M., Vasil M. L. 1982; Phospholipase C (heat-labile hemolysin) of Pseudomonas aeruginosa : purification and preliminary characterization.. J Bacteriol 152:239–245
    [Google Scholar]
  5. Black P. N., DiRusso C. C. 1994; Molecular and biochemical analyses of fatty acid transport, metabolism, and gene regulation in Escherichia coli.. Biochim Biophys Acta 1210:123–145
    [Google Scholar]
  6. Brdiczka D. 1990; Interaction of mitochondria1 porin with cytosolic proteins.. Experentia 46:161–167
    [Google Scholar]
  7. Burns D. M., Beacham I. R. 1986; Identification and sequence analysis of a silent gene (ushAo) in Salmonella typhimurium.. J Mol Biol 192:163–175
    [Google Scholar]
  8. Chamberlain J. P. Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salicylate.. Anal Biochem 98:132–135
    [Google Scholar]
  9. Claiborne A., Buckley E., Parsonage D., Ross P., Ward D. 1995; Molecular analysis of enterococcal loci involved in novel catabolic pathways. In Genetics of Streptococci, Enterococci and Lactococci, pp. Edited by F. Brown & J. J. Ferretti. Basel : Karger.. 129–133
    [Google Scholar]
  10. Cozzarelli N. R., Freedberg W. B., Lin E. C. C. 1968; Genetic control of the LS-α-glycerophosphate system in Escherichia coli.. J Mol Bio 31:371–387
    [Google Scholar]
  11. Cuskey S. M., Phibbs P. V. 1985; Chromosomal mapping of mutations affecting glycerol and glucose metabolism in Pseudomonas aeruginosa PAO.. J Bacteriol 162:872–880
    [Google Scholar]
  12. Flaherty K. M., McKay D. B., Kabsch W., Holrnes K. C. 1991; Similarity of the three-dimensional structures of actin and the ATPase fragment of a 70-kDa heat shock cognate protein.. Proc Natl Acad Sci USA 88:5041–5045
    [Google Scholar]
  13. Fleischmann R. D., Adams M. D., White O., 37 other authors. 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd.. Science 269:496–512
    [Google Scholar]
  14. Girod S., Galabert C., Lecuire A., Zahm J. M., Puchelle E. 1992; Phospholipid composition and surface-active properties of tracheobronchial secretions from patients with cystic fibrosis and chronic obstructive pulmonary diseases.. Ped Pulmonol 13:22–27
    [Google Scholar]
  15. Gorin M. B., Yancay S. B., Cline J., Revel J. R., Horvitz J. 1984; The major intrinsic membrane protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning.. Cell 39:49–59
    [Google Scholar]
  16. Hayashi S.-L., Lin E. C. C. 1965; Capture of glycerol by cells of Escherichia coli.. Biochim Biophys Acta 94:479–487
    [Google Scholar]
  17. Heller K. B., Lin E. C. C., Wilson T. H. 1980; Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli.. J Bacteriol 144:274–278
    [Google Scholar]
  18. Hofmann K., Stoffel W. 1993; A database of membrane spanning protein segments.. Biol Chem Hoppe-Seyler 347:166
    [Google Scholar]
  19. Holloway B. W., Römling U., Tümmler B. 1994; Genomic mapping of Pseudomonas aeruginosa PAO.. Microbiology 140:2907–2929
    [Google Scholar]
  20. Holmberg C., Beijer L., Rutberg B., Rutberg L. 1990; Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase (glpD).. J Gen Microbiol 136:2367–2375
    [Google Scholar]
  21. Hurley J. H., Faber H. R., Worthylake D., Meadow N. D., Roseman S., Pettigrew D. W., Remington S. J. 1993; Structure of the regulatory complex of Escherichia coli IIIGlc with glycerol kinase.. Science 259:673–677
    [Google Scholar]
  22. Jaeger K.-E., Kinscher D. A., Koenig B., Koening W. 1992; Extracellular lipase of Pseudomonas aeruginosa : biochemistry and potential role as a virulence factor. In Cystic Fibrosis: Basic and Clinical Research, pp. Edited by N. Hoiby & S. S. Pedersen. Amsterdam : Elsevier.. 113–119
    [Google Scholar]
  23. Larson T. J., Ehrmann M., Boos W. 1983; Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon.. J Biol Chem 258:5428–5432
    [Google Scholar]
  24. Liao X., Charlebois I., Ouellet C., 9 other authors. 1996; Physical mapping of 32 genetic markers on the Pseudomonas aeruginosa PAO1 chromosome.. Microbiology 142:79–86
    [Google Scholar]
  25. Lin E. C. C. 1996; Dissimilatory pathways for sugars, polyols, and carboxylates. In Escherichia coli and Salmonella, pp. Edited by F. C. Neidhardt, R. Curtiss, 111, J. L. Ingraham, E. C. C. Lin, K. Brooks Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter & H. E. Umbarger. Washington, DC : American Society for Microbiology.. 307–342
    [Google Scholar]
  26. Liss L. 1987; New M13 host: DH5αF competent cells.. Focus 9:13
    [Google Scholar]
  27. McCowen S. M., Phibbs P. V., Feary T. W. 1981; Glycerol catabolism in wild-type and mutant strains of Pseudomonas aeruginosa.. Curr Microbiol 5:191–196
    [Google Scholar]
  28. Makowski G. S., Ramsby M. L. 1993; pH modification to enhance the molecular sieving properties of sodium dodecyl sulfate-10 % polyacrylamide gel.. Anal Biochem 212:283–285
    [Google Scholar]
  29. Marty N., Dournes J. -L., Chabanon G., Montrozier H. 1992; Influence of nutrient media on the chemical composition of the exopolysaccharide from mucoid and non-mucoid Pseudomonas aeruginosa.. FEMS Microbiol Lett 98:35–44
    [Google Scholar]
  30. May T. B., Shinabarger D., Maharaj R., 9 other authors . 1991; Alginate synthesis by Pseudomonas aeruginosa : a key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients.. Clin Microbiol Rev 4:191–206
    [Google Scholar]
  31. Metcalf W. W., Jiang W., Wanner B. L. 1994; Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6Kγ origin plasmids at different copy numbers.. Gene 138:1–7
    [Google Scholar]
  32. Miller J. H. 1992; A Short Course in Bacterial Genetics, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory..
    [Google Scholar]
  33. Nikaido H., Saier M. H.Jr. 1992; Transport proteins in bacteria : common themes in their design.. Science 258:936–942
    [Google Scholar]
  34. Ochsner U. A. 1993; Genetics and biochemistry of Pseudomonas aeruginosa rhamnolipid biosurfactant synthesis. Dissertation, Swiss Federal Institute of Technology.. Science 258:936–942
    [Google Scholar]
  35. Ochsner U. A., Koch A. K., Fiechter A., Reiser J. 1994; Isolation and characterization of a regulatory gene affecting rhamnolipid synthesis in Pseudomonas aeruginosa.. J Bacteriol 176:2044–2054
    [Google Scholar]
  36. Parker C., Barnell W. O., Snoep J. L., Ingram L. O., Conway T. 1995; Characterization of the Zymomonas mobilis glucose facilitator gene product (glf) in recombinant Escherichia coli: examination of transport mechanism, kinetics and the role of glucokinase in glucose transport. . Mol Microbiol 15:795–802
    [Google Scholar]
  37. Pettigrew D. W., Ma D.-P., Conradt C. A., Johnson J. R. 1988; Escherichia coli glycerol kinase. . J Biol Chem 263:135–139
    [Google Scholar]
  38. Rosenberg M. C., Court D. 1979; Regulatory sequences involved in the promotion and termination of RNA transcription.. Annu Rev Genet 13:319–353
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. . 2:
    [Google Scholar]
  40. Sanno Y., Wilson H., Lin E. C. C. 968; Control of permeation to glycerol in cells of Escherichia coli.. Biophys Res Commun 32:344–349
    [Google Scholar]
  41. Schweizer H. P. 1991; The agmR gene, an environmentally responsive gene, complements defective glpR, which encodes the putative activator for glycerol metabolism in Pseudornonas aeruginosa.. J Bacteriol 173:6789–6806
    [Google Scholar]
  42. Schweizer H. P., Hoang T. 1995; An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa.. Gene 158:15–22
    [Google Scholar]
  43. Schweizer H. P., Po C. 1994; Cloning and nucleotide sequence of the glpD gene encoding sn-glycerol-3-phosphate dehydrogenase from Pseudomonas aeruginosa.. J Bacteriol 176:2184–2193
    [Google Scholar]
  44. Schweizer H. P., Po C. 1996; Regulation of glycerol metabolism in Pseudomonus aeruginosa: characterization of the glpR repressor gene.. J Bacteriol 178:5215–5221
    [Google Scholar]
  45. Schweizer H. P., Po C., Bacic M. K. 1995; Identification of Pseudomonas aeruginosa glpM, whose gene product is required for efficient alginate biosynthesis from various carbon sources.. J Bacteriol 177:4801–4804
    [Google Scholar]
  46. Schweizer H. P., Klassen T. R., Hoang T. 1996; Improved methods for gene analysis and expression in Pseudomonas. In Molecular Biology of Pseudomonads, pp. Edited by T. Nakazawa, K. Furukawa, D. Haas & S. Silver. Washington, DC: American Society for Microbiology.. 229–237
    [Google Scholar]
  47. Shortridge V. D, Lazdunsk A., Vasil M. L. 1992; Osmoprotectants and phosphate regulate expression of phospholipase C in Pseudomonas aeruginosa.. Mol Microbiol 6:863–871
    [Google Scholar]
  48. Siegel L. S., Phibbs P. V. 1979; Glycerol and L-α-glycerol-3-phosphate uptake in Pseudomonas aeruginosa.. Curr Microbiol 2:251–256
    [Google Scholar]
  49. Simon R., O'Connell M., Labes M., Pühler A. 1986; Plasmid vectors for the genetic analysis and manipulation of rhizobia and other Gram-negative bacteria. . Methods Enzymol 118:640–659
    [Google Scholar]
  50. Sprenger G. A., Hammer B. A., Johnson E. A., Lin E. C. C. 1989; Anaerobic growth of Escherichia coli on glycerol by importing genes of the dha regulon from Klebsiella pneumoniae.. J Gen Microbiol 135:1255–1262
    [Google Scholar]
  51. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. 1990; Use of T7 RNA polymerase to direct expression of cloned genes.. Methods Enzymol 185:60–89
    [Google Scholar]
  52. Sweet G., Gandor C., Voegele R., Wittekindt N., Beuerle J., Truniger V., Lin E. C. C, Boos W. 1990; Glycerol facilitator of Escherichia coli: cloning of glpF and identification of the glpF product. . J Bacteriol 172:424–430
    [Google Scholar]
  53. Tabor S. 1994; Expression using the T7 RNA polymerase/ promoter system. In Short Protocols in Molecular Biology, pp. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Wiley. . 1–10
    [Google Scholar]
  54. Terry J. M., Pina S. E., Mattingly S. J. 1991; Environmental conditions which influenze mucoid conversion in Pseudomonas aeruginosa PAO1.. Infect Immun 59:471–479
    [Google Scholar]
  55. Terry J. M., Pina S. E., Mattingly S. J. 1992; Role of energy metabolism in conversion of nonmucoid Pseudomonas aeruginosa to the mucoid phenotype.. Infect Immun 60:1329–1335
    [Google Scholar]
  56. Thorner J. W., Paulus H. 1971; Composition and subunit structure of glycerol kinase from Escherichia coli.. J Biol Chem 246:3885–3894
    [Google Scholar]
  57. Truniger V., Boos W., Sweet G. 1992; Molecular analysis of the glpFKX region of Escherichia coli and Shigella flexneri.. J Bacteriol 174:6981–6991
    [Google Scholar]
  58. Tsay S.-S., Brown K. K., Gaudy E. T. 1971; Transport of glycerol by Pseudomonus aeruginosa.. J Bacteriol 108:82–88
    [Google Scholar]
  59. Vasil M. L., Graham M. L., Ostroff R. M., Shortridge V. D., Vasil A. I. 1991; Phospholipase C: molecular biology and contribution to the pathogenesis of Pseudomonas aeruginosa.. Antibiot Chemother 44:34–47
    [Google Scholar]
  60. Voegele R., Sweet G. D., Boo W. 1993; Glycerol kinase of Escherichia coli is activated by interaction with the glycerol facilitator.. J Bacteriol 175:1087–1094
    [Google Scholar]
  61. Weissenborn D. L., Larson T. J. 1992; Structure and regulation of the glpFK operon encoding glycerol diffusion facilitator and glycerol kinase of Escherichia coli K-12.. J Biol Chem 267:6122–6131
    [Google Scholar]
  62. Weisser P., Kramer R., Sahm H., Sprenger G. A. 1995; Functional expression of the glucose transporter of Zymomonas mobilis leads to restoration of glucose and fructose uptake in Escherichia coli mutants and provides evidence for its facilitator action.. J Bacteriol 177:3351–3354
    [Google Scholar]
  63. Wieslander L. 1979; A simple method to recover intact high molecular weight RNA and DNA after electrophoretic separation in low gelling temperature agarose gels.. Anal Biochem 98:305–309
    [Google Scholar]
  64. Williams S. G., Greenwood J. A., Jones C. W. 1994; The effect of nutrient limitation on glycerol uptake and metabolism in continuous cultures of Pseudomonas aeruginosa.. Microbiology 140:2961–2969
    [Google Scholar]
  65. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors.. Gene 33:103–119
    [Google Scholar]
  66. Zwaig M., Kistler S., Lin E. C. C. 1970; Glycerol kinase, the pacemaker for the dissimilation of glycerol in Escherichia coli.. J Bacteriol 102:753–759
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-4-1287
Loading
/content/journal/micro/10.1099/00221287-143-4-1287
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error