1887

Abstract

The dissociation of the soluble NAD-reducing hydrogenase of MR11 into two dimeric proteins with different catalytic activities and cofactor composition is unique among the NAD-reducing hydrogenases studied so far. The genes of the soluble hydrogenase were localized on a 7.4 kbp fragment of the linear plasmid pHG201 via heterologous hybridization. Analysis of the nucleotide sequence of this fragment revealed the seven open reading frames ORF1, and ORF7. The six latter ORFs belong to the gene cluster of the soluble hydrogenase. Their gene products are highly homologous to those of the NAD-reducing enzyme of H16. The genes and encode the subunits α, γ, δ and ß, respectively. The gene encodes a putative protease, which may be essential for C-terminal processing of the ß subunit. Finally, ORF7 encodes a protein which has similarities to cAMP- and cGMP-binding protein kinases, but its function is not known. 0RF1, which lies upstream of the hydrogenase gene cluster, encodes a putative transposase found in IS elements of other bacteria. Northern hybridizations and primer extensions using total RNA of autotrophically and heterotrophically grown cells of MR11 indicated that the hydrogenase genes are under control of a α-like promoter located at the right end of ORF1 and are even transcribed under heterotrophic conditions at a low level. Furthermore, this promoter was shown to be active in the recombinant strain LHY1 harbouring the 7.4 kbp fragment, resulting in overexpression of the hydrogenase genes. Although all four subunits of the soluble hydrogenase were shown via Western immunoblots to be synthesized in , no active enzyme was detectable.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-4-1271
1997-04-01
2021-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/4/mic-143-4-1271.html?itemId=/content/journal/micro/10.1099/00221287-143-4-1271&mimeType=html&fmt=ahah

References

  1. Aggag M., Schlegel H. G. 1973; Studies on a Gram-positive hydrogen bacterium, Nocardia opaca lb. I. Description and physiological characterization.. Arch Mikrobiol 88:299–318
    [Google Scholar]
  2. Albracht S. P. J. 1994; Nickel hydrogenases: in search of the active site.. Biochim Biophys Acta 1188:167–204
    [Google Scholar]
  3. Albracht S. P. J. 1995; Hydrogenasen : Wasserstoffkatalysatoren aus der Natur.. Biospektrum 1(5):42–45
    [Google Scholar]
  4. Ali S. T., Duncan A. M., Schappert K., Heng H. H., Tsui L. C., Chow W., Robinson B. H. 1993; Chromosomal localization of the human gene encoding the 51-kDa subunit of mitochondrial complex I (NDUFV1) to 11q13.. Genomics 18:435–439
    [Google Scholar]
  5. Altschul S. F., Gish W., Miller W., Miller E. W., Lipman D. J. 1990; Basic local alignment search tool.. J Mol Bio 215:403–410
    [Google Scholar]
  6. Aragno M., Schlegel H. G. 1992; The mesophilic hydrogenoxidizing (Knallgas) bacteria. Edited by A. Balows, H. G. Truper, M. Dworkin, W. Harder & K. H. Schleifer.. The Prokaryotes New York: Springer.:344–384
    [Google Scholar]
  7. Archer C. D., Wang X., Elliott T. 1993; Mutants defective in the energy-conserving NADH dehydrogenase of Salmonella typhimurium identified by a decrease in energy-dependent proteolysis after carbon starvation.. Proc Nut1 Acad Sci USA 90:9877–9881
    [Google Scholar]
  8. Azevedo J. E., Duarte M., Belo J. A., Werner S., Videira A. 1994; Complementary DNA sequences of the 24 kDa and 21 kDa subunits of complex I from Neurospora.. Biochim Biophys Acta 1188:159–161
    [Google Scholar]
  9. Bergold P. J., Beushausen S. A., Sacktor T. C., Cheley S., Bayley H., Schwartz J. H. 1992; A regulatory subunit of the CAMPdependent protein kinase down-regulated in Aplysia sensory neurons during long-term sensitization.. Neuron 8:387–397
    [Google Scholar]
  10. Bibb M. J., Findlay P. R., Johnson M. W. 1984; The relationship between base composition and codon usage in bacterial genes and its use for the simple reliable identification of proteincoding sequences.. Gene 157:157–166
    [Google Scholar]
  11. Chow W., Ragan I., Robinson B. H. 1991; Determination of the cDNA sequence for the human mitochondrial 75-kDa Fe-S protein of NADH-coenzyme Q reductase.. Eur J Biochem 201:547–550
    [Google Scholar]
  12. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX.. Nucleic Acids Res 12:387–395
    [Google Scholar]
  13. Fiebig K., Friedrich B. 1989; Purification of the F420 reducing hydrogenase from Methanosarcina barkeri (strain Fusaro).. Eur J Biochem 184:79–88
    [Google Scholar]
  14. Friedrich B., Schwartz E. 1993; Molecular biology of hydrogen utilization in aerobic chemolithotrophs.. Annu Rev Microbiol 47:351–383
    [Google Scholar]
  15. Friedrich B., Hogrefe C., Schlegel H. G. 1981; Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus.. J Bacteriol 147:198–205
    [Google Scholar]
  16. Friedrich B., Friedrich C. G., Meyer M., Schlegel H. G. 1994; Expression of hydrogenase in Alcaligenes spp. is altered by interspecific plasmid exchange.. J Bacteriol 158:331–333
    [Google Scholar]
  17. Gollin D. J., Mortenson L. E., Robson R. L. 1992; Carboxylterminal processing may be essential for production of active NiFe hydrogenase in Azotobacter vinelandii . FEBS Lett 309:371–375
    [Google Scholar]
  18. Grzeszik C., Rob K., Schneider K., Reh M., Schlegel H. G. 1997; Location, catalytic activity, and subunit composition of NAD-reducing hydrogenases of some Alcaligenes strains and Rhodococcus opacus MR22.. Arch Microbiol (in press).
    [Google Scholar]
  19. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. . J Mol Biol 166:557–580
    [Google Scholar]
  20. Holmes D. S., Quigley M. 1981; A rapid boiling method for the preparation of bacterial plasmids.. Anal Biochem 114:193–197
    [Google Scholar]
  21. Hornhardt S., Schneider K., Friedrich B., Vogt B., Schlegel H. G. 1990; Identification of distinct NAD-linked hydrogenase protein species in mutants and nickel-deficient wild-type cells of Alcaligenes eutrophus H16.. Eur J Biochem 189:529–537
    [Google Scholar]
  22. Jovin T, Chrambach A., Naughton M. A. 1964; An apparatus for temperature-regulated polyacrylamide gel electrophoresis.. Anal Biochem 9:351–369
    [Google Scholar]
  23. Kalkus J., Reh M., Schlegel H. G. 1990; Hydrogen autotrophy of Nocardia opaca strains is encoded by linear megaplasmids.. J Gen Microbiol 136:1145–1151
    [Google Scholar]
  24. Kalkus J., Dörrie C., Fischer D., Rhe M., Schlegel H. G. 1993; The giant linear plasmid pHG207 from Rhodococcus sp. encoding hydrogen autotrophy : characterization of the plasmid and its termini.. J Gen Microbiol 139:2055–2065
    [Google Scholar]
  25. Kärst U., Suetin S., Friedrich G. 1987; Purification and properties of a protein linked to the soluble hydrogenase of hydrogen-oxidizing bacteria.. J Bacteriol 169:2079–2085
    [Google Scholar]
  26. Karube I., Urano N., Yamada T., Hirochika H., Sakaguchi K. 1983; Cloning and expression of the hydrogenase gene from Clostridium butyricum in Escherichia coli.. FEBS Lett 158:119–122
    [Google Scholar]
  27. Klatte S., Kroppenstedt R. M., Rainey F. A. 1994; Rhodococcus opacus sp. nov., an unusual nutritionally versatile Rhodococcus-species.. Syst Appl Microbiol 17:355–360
    [Google Scholar]
  28. Kusian B., Bednarski R., Husemann M., Bowien B. 1995; Characterization of the duplicate ribulose-1,5-bisphosphate carboxylase genes and cbb promoters of Alcaligenes eutrophus . J Bacteriol 177:4442–4450
    [Google Scholar]
  29. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bactriophage T4.. Nature 227:680–685
    [Google Scholar]
  30. McClelland M., Jones R., Patel Y. 1987; Restriction endonucleases for pulsed field mapping of bacterial genomes.. Nucleic Acids Res 15:5985–6005
    [Google Scholar]
  31. Malki S., Saimmaime I., de Luca G., Rousset M., Dermoun Z., Belaich J. P. 1995; Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans.. J Bacteriol 177:2628–2636
    [Google Scholar]
  32. Matsubara H., Saeki K. 1992; Structural and functional diversity of ferredoxins and related proteins.. Adv Inorg Chem 38:223–280
    [Google Scholar]
  33. Needleman S. B., Wunsch C. D. 1970; A general method applicable to search for similarities in the amino acid sequence of two proteins.. J Mol Bio l48,:443–453
    [Google Scholar]
  34. Newbury S. F., Smith N. H., Robinson E. C., Hiles L. D., Higgins C. F. 1987; Stabilization of translationally active mRNA by prokaryotic REP sequences.. Cell 48:297–310
    [Google Scholar]
  35. Oelmüller U., Krüger N., Steinbtichel A., Friedrich C. G. 1990a; Isolation of prokaryotic RNA and detection of specific mRNA with biotinylated probes.. J Microbiol Methods 11:73–84
    [Google Scholar]
  36. Oelmüller U., Schlegel H. G., Friedrich C. G. 1990b; Differential stability of mRNA species of Alcaligenes eutrophus soluble and particulate hydrogenases.. J Bacteriol 172:7057–7064
    [Google Scholar]
  37. Patel S. D., Aebersold R., Attardi G. 1991; cDNA-derived amino acid sequence of the NADH-binding 51-kDa subunit of the bovine respiratory NADH dehydrogenase reveals striking similarities to a bacterial NAD+-reducing hydrogenase.. Proc Nut1 Acad Sci USA 88:4225–4229
    [Google Scholar]
  38. Pilkington S. J., Walker E. 1989; Mitochondrial NADHubiquinone reductase : complementary DNA sequences of import precursors of the bovine and human 24-kDa subunit.. Biochemistry 28:3257–3264
    [Google Scholar]
  39. Pilkington S. J., Skehel J. M., Gennis R. B., Walker J. E. 1991; Relationship between mitochondria1 NADH-ubiquinone reductase and a bacterial NAD-reducing hydrogenase. . Biochemistry 30:2166–2175
    [Google Scholar]
  40. Preis D., Weidner U., Conzen C., Azevedo J. E., Nehls U., Roehlen D., Sackmann U., Schneider R., Werner s., Weiss h. 1991; Primary structure of the two subunits of NADH : ubiquinone reductase from Neurospora crassa concerned with NADH-oxidation. Relationship to a soluble NAD-reducing hydrogenase of Alcaligenes eutrophus.. Biochim Biophys Acta 1090:133–138
    [Google Scholar]
  41. Przbyla A. E., Robbins J., Menon N., Peck H. D. Jr. 1992; Structure-function relationships among the nickel-containing hydrogenases.. FEMS Microbiol Rev 88:109–136
    [Google Scholar]
  42. Reh M., Schlegel H. G. 1975; Chemolithoautotrophie als eine ubertragbare autonome Eigenschaft von Nocardia opaca 1 b. Nachr Akad Wiss Gottingen, II. . Math-Phys Klasse 12:207–216
    [Google Scholar]
  43. Reh M., Schlegel H. G. 1981; Hydrogen autotrophy as a transferable genetic character of Nocardia opaca lb.. J Gen Microbiol 126:327–336
    [Google Scholar]
  44. Rossmann R., Sauter M., Lottspeich F., Böck A. 1994; Maturation of the large subunit (HYCE) of Escherichia coli hydrogenase 3 requires nickel incorporation followed by Cterminal processing at Arg.537.. Eur J Biochem 220:377–384
    [Google Scholar]
  45. Runswick M. J., Gennis R. B., Fearnley J. M., Walker J. E. 1989; Mitochondrial NADH : ubiquinone reductase : comple mentary DNA sequence of the import precursor of the bovine 75-kDa subunit.. Biochemistry 28:9452–9459
    [Google Scholar]
  46. Sambrook J., Fritsch E. F., Maniatis T. (1989).; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory..
    [Google Scholar]
  47. Sandberg M., Natarajan V., Ronander I., Kalderon D., Walter U., Lohmann S. M., Jahnsen T. (1989).; Molecular cloning and predicted full-length amino acid sequence of the type I beta isozyme of cGMP-dependent protein kinase from human placenta. . FEBS Lett 255:321–329
    [Google Scholar]
  48. Sanger F., Nicklen S., Coulson A. R. (1977).; DNA sequencing with chain-terminating inhibitors.. Proc Nut1 Acad Sci USA 74:5463–5437
    [Google Scholar]
  49. Schink B., Schlegel H. G. (1979).; The membrane-bound hydrogenase of Alcaligenes eutrophus. I. Solubilization, purification and biochemical properties.. Biochim Biophys Acta 567:315–324
    [Google Scholar]
  50. Schlesier M., Friedrich B. 1982; Effect of molecular hydrogen on histidine utilization by lcaligenes eutrophus.. Arch Microbiol 132:260–265
    [Google Scholar]
  51. Schmitz O., Boison G., Hilscher R., Hundeshagen B., Hilscher R., Zimmer W., Lottspeich R., Bothe H. 1995; Molecular biological analysis of a bidirectional hydrogenase from cyanobacteria.. Eur J Biochem 233:266–276
    [Google Scholar]
  52. Schneider K., Schlegel H. G., Jochim K. 1984a; Effect of nickel on activity and subunit composition of purified hydrogenase from Nocardia opaca lb.. Eur J Biochem 138:533–541
    [Google Scholar]
  53. Schneider K., Cammack R., Schlegel H. G. 1984b; Content and localization of FMN, Fe-S clusters and nickel in the NADlinked hydrogenase of Nocardia opaca Ib.. Eur J Biochem 142:75–84
    [Google Scholar]
  54. Sensfuss C., Reh M., Schlegel H. G. (1986).; No correlation exists between the conjugative transfer of the autotrophic character and that of plasmids in Nocardia opaca strains.. J Gen Microbiol 132:997–1007
    [Google Scholar]
  55. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering : transposonmutagenesis in Gram-negative bacteria.. Biotechnology 1:784–791
    [Google Scholar]
  56. Sorgenfrei O., Linder D., Karas M., Klein A. 1993; A novel very small subunit of a selenium containing [NiFe] hydrogenase of Methanococcus voltae is posttranslationally processed by cleavage at a defined position.. Eur J Biochem 213:1355–1358
    [Google Scholar]
  57. Spaink H. P., Okker R. J. H., Wijffelman C. A., Pees E., Lugtenberg B. J. J. 1987; Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRLl JI.. Plant Mol Biol 9:27–39
    [Google Scholar]
  58. Stanssens P., Opsomer C., McKeown Y. M., Kramer W., Zabeau M., Fritz H. J. 1989; Efficient oligonucleotide-directed construction of mutations in expression vectors by the gapped duplex DNA method using alternating selectable markers.. Nucleic Acids Res 17:4441–4454
    [Google Scholar]
  59. Thiemermann S., Dernedde J., Bernhard M., Schroeder W., Massanz C., Friedrich B. 1996; Carboxyl-terminal processing of the cytoplasmic NAD-reducing hydrogenase of Alcaligenes eutrophus requires the hoxW gene product.. J Bacteriol 178:2368–2374
    [Google Scholar]
  60. Tran-Betcke A., Warnecke U., Bocker C., Zaborosch C., Friedric B. 1990; Cloning and nucleotide sequences of the genes for the subunits of NAD-reducing hydrogenase of Alcaligenes eutrophus H16.. J Bacteriol 172:2920–2929
    [Google Scholar]
  61. Vieira J., Messing J. 1987; Production of single stranded plasmid DNA.. Methods Enzymol 153:3–11
    [Google Scholar]
  62. Vignais P., Toussaint B. 1994; Molecular biology of membrane-bound H, uptake hydrogenases.. Arch Microbiol l61:1–10
    [Google Scholar]
  63. Volbeda A., Charon M. H., Piras C., Hatchikian E. C., Frey M., Fontecilla-Camps J. C. 1995; Crystal structure of the nickel-ironhydrogenase from Desulfovibrio gigas.. Nature 373:580–587
    [Google Scholar]
  64. Voordouw G., Walker J. E., Brenner S. 1985; Cloning of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough) and determination of the NH,-terminal sequence.. Eur J Biochem 148:509–514
    [Google Scholar]
  65. Walker J. E. (1992).; The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains.. Q Rev Biophys 25:253–324
    [Google Scholar]
  66. Weidner U., Geier S., Ptock A., Friedrich T., Leif H., Weiss H. 1993; The gene locus of the proton-translocating NADH:ubiquinone oxidoreductase in Escherichia coli. Organization of the 14 genes and relationship between the derived proteins and subunits of mitochondria1 complex I.. J Mol Biol 233:109–122
    [Google Scholar]
  67. Wernet W., Flockerzi V., Hofmann F. 1989; The cDNA of the two isoforms of bovine cGMP-dependent protein kinase.. FEBS Lett 251:191–196
    [Google Scholar]
  68. Wu L. F., Mandrand M. A. 1993; Microbial hydrogenases: primary structure, classification, signatures and phylogeny.. FEMS Microbiol Rev 104:243–270
    [Google Scholar]
  69. Xu X., Matsuno-Yagi A., Yagi T. 1991a; The NADH-binding subunit of the energy-transducing NADH-ubiquinone oxido-reductase of paracoccus denitrificans: gene cloning and deduced primary structure.. Biochemistry 30:6422–6428
    [Google Scholar]
  70. Xu X., Matsuno-Yagi A., Yagi T. 1991b; Characterization of the 25-kilodalton subunit of the energy-transducing NADH-ubiquinone oxidoreductase of Paracoccus denitrificans: sequence similarity to the 24-kilodalton subunit of the flavoprotein fraction of mammalian complex I.. Biochemistry 30:8678–8684
    [Google Scholar]
  71. Xu X., Matsuno-Yagi A., Yagi T. 1992; Structural features of the 66 kilodalton subunit of the energy-transducing NADH-ubiquinone oxidoreductase (NDH-1) of Paracoccus denitrificans.. Arch Biochem Biophys 296:40–48
    [Google Scholar]
  72. Zaborosch C., Schneider K., Schlegel H. G., Kratzin H. 1989; Comparison of the NH2-terminal amino-acid sequences of the non-identical subunits of the NAD-linked hydrogenases from Nocardia opaca 1b and Alcaligenes eutrophus H16.. Eur J Biochem 181:175–180
    [Google Scholar]
  73. Zaborosch C., Köster M., Bill E., Schneider K., Schlegel H. G., Trautwein A. X. 1995; EPR and Mössbauer spectroscopic studies on the tetrameric, NAD-linked hydrogenase of Nocardia opaca 1b and its two dimers. 1. The βγ-dimer - a prototype of a simple hydrogenase.. Biometals 8:149–162
    [Google Scholar]
  74. Zuber M., Harker A. R., Sultana M. A., Evans H. J. 1986; Cloning and sequencing of Bradyrhizobium japonicum uptake hydrogenase structural genes in Escherichia coli.. Proc Nut1 Acad Sci USA 83:7668–7672
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-4-1271
Loading
/content/journal/micro/10.1099/00221287-143-4-1271
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error