1887

Abstract

The determinant of plasmid pRJ1004 encodes inducible resistance to the trace element copper. The identification of two copper-dependent transcriptional initiation regions within that each contain a similar upstream hyphenated dyad motif is described. Deletion constructs showed that this “copper box” motif was essential for copper-inducible activity at both pco promoters, P and P The placement of the motif differs in the two promoters, and P contains an extended -10 nonamer typical of promoters for which RNA polymerase does not bind specifically to -35 sequences. P does not contain this motif and is the more strongly expressed promoter. The transcript from P contains the genes, while expresses only The induction profiles for and P fusions were flattened sigmoidal curves with a gradual response to increasing copper concentration. On high-copy-number plasmids, zinc was found also to induce transcription from both promoters Both promoters showed inducible activity in the absence of the plasmid-borne two-component regulatory system, indicating that a second trans-acting regulatory system is present on the chromosome. The product showed repressor action in the absence of while still allowing induction, suggesting the chromosome encoded a similar two-component system to Tn insertion mutagenesis identified chromosomal genes which affected promoter expression, including (sugar phosphotransferase system) and cya (adenylate cyclase). The results support that idea that -encoded copper resistance is an auxiliary mechanism for handling copper, the regulation of which is integrated with the chromosomal regulation of cellular copper metabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-4-1191
1997-04-01
2021-04-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/4/mic-143-4-1191.html?itemId=/content/journal/micro/10.1099/00221287-143-4-1191&mimeType=html&fmt=ahah

References

  1. Aiba H, Adhya S., de Crombrugghe B. 1981; Evidence for two functional gal promoters in intact Escherichia coli cells.. J Biol Chem 256:11905–11910
    [Google Scholar]
  2. Bartolomé B., Jubete Y., Martinez E., de la Cruz F. 1991; Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives.. Gene 102:75–78
    [Google Scholar]
  3. Bender C. L., Cooksey D. A. 1986; Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance.. J Bacteriol 165:534–541
    [Google Scholar]
  4. Brosius J., Holy A. 1984; Regulation of ribosomal RNA promoters with a synthetic lac operator.. Proc Natl Acad Sci USA 81:6929–6933
    [Google Scholar]
  5. Brown N. L., Rouch D. A., Lee B. T. 0. 1992; Copper resistance determinants in bacteria.. Plasmid 27:41–51
    [Google Scholar]
  6. Brown N. L., Lee B. T. O., Silver S. 1993; Bacterial transport of and resistance to copper. In Metal Ions in Biological Systems,. Edited by H. Sigel & A. Sigel. New York: Marcel Dekker. 27:405–430
    [Google Scholar]
  7. Brown N. L., Barrett S. R., Camakaris J., Lee B. T., Rouch D. A. 1995; Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pR 51004.. Mol Microbiol 17:1153–1166
    [Google Scholar]
  8. Cervantes C., Gutierrez-Corona F. 1994; Copper resistance mechanisms in bacteria and fungi.. FEMS Microbiol Rev 14:121–137
    [Google Scholar]
  9. Chan B., Busby S. 1989; Recognition of nucleotide sequences at the Escherichia coli galactose operon P1 promoter by RNA polymerase.. Gene 84:221–236
    [Google Scholar]
  10. Cooksey D. A. 1993; Copper uptake and resistance in bacteria.. Mol Microbiol 7:1–5
    [Google Scholar]
  11. Cooksey D. A. 1994; Molecular mechanisms of copper resistance and accumulation in bacteria.. FEMS Microbiol Rev 14:381–386
    [Google Scholar]
  12. Daggett P., Gherna R. L., Pienta P., Nierman W., Jong S., Hsu H., Brandon B., Alexander M. 1982; American Type Culture Collection. Catalogue of Strains I.. Rockville, MD: American Type Culture Collection.
    [Google Scholar]
  13. Debarbouille M., Raibaud O. 1983; Expression of the Escherichia coli malPQ operon remains unaffected after drastic alteration of its promoter.. J Bacteriol 153:1221–1227
    [Google Scholar]
  14. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX.. Nucleic Acids Res 12:387–395
    [Google Scholar]
  15. Hill A. V. 1913; The combinations of haemoglobin with oxygen and with carbon monoxide.. Biochem J 7:471–480
    [Google Scholar]
  16. Kumar A., Malloch R. A., Fujita N., Smillie D. A., Ishihama A., Hayward R. S. 1993; The minus 35-recognition region of Escherichia coli sigma 70 is inessential for initiation of transcription at an ‘extended minus 10’ promoter.. J Mol Biol 232:406–418
    [Google Scholar]
  17. Lee B. T. O., Brown N. L., Rogers S., Bergemann A., Camakaris J., Rouch D. A. 1990; Bacterial response to copper in the environment: copper resistance in Escherichia coli as a model system. In Metal Speciation in the Environment,. Edited by J. A. C. Broekaert, S. Guçer & F. Adams. Berlin: Springer-Verlag.625–632
    [Google Scholar]
  18. Lee Y.A., Hendson M., Panopoulos N. J., Schroth M. N. 1994; Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase.. J Bacteriol 176:173–188
    [Google Scholar]
  19. Manoil C., Beckwith J. 1985; TnphoA: a transposon probe for protein export signals.. Proc Natl Acad Sci USA 82:8129–8133
    [Google Scholar]
  20. Mellano M. A., Cooksey D. A. 1988; Induction of the copper resistance operon from Pseudomonas syringae.. J Bacteriol 170:4399–4401
    [Google Scholar]
  21. Miller J. H. 1972; Experiments in Molecular Genetics. Cold Spring Harbor, NY:. Cold Spring Harbor Laboratory.
    [Google Scholar]
  22. Mills S. D., Lim C. K., Cooksey D. A. 1994; Purification and characterization of CopR, a transcriptional activator protein that binds to a conserved domain (cop box) in copper-inducible promoters of Pseudomonas syringae.. Mol Gen Genet 244:341–351
    [Google Scholar]
  23. Minchin S., Busby S. 1993; Location of close contacts between Escherichia coli RNA polymerase and guanine residues at promoters either with or without consensus -35 region sequences.. Biochem J 289 :771–775
    [Google Scholar]
  24. Ochman H., Gerber A. S., Hartl D. L. 1988; Genetic applications of an inverse polymerase chain reaction.. Genetics 120 :621–623
    [Google Scholar]
  25. Pao G. M., Tam R., Lipschitz L. S., Saier M. H., Jr. 1994; Response regulators: structure, function and evolution.. Res Microbiol 145:356–362
    [Google Scholar]
  26. Parkinson J. S. 1993; Signal transduction schemes of bacteria.. Cell 73:857–871
    [Google Scholar]
  27. Parkinson J. S., Kofoid E. C. 1992; Communication modules in bacterial signalling proteins.. Annu Rev Genet 26:71–112
    [Google Scholar]
  28. Praszkier J., Wilson I. W., Pittard A. J. 1992; Mutations affecting translational coupling between the rep genes of an IncB miniplasmid.. J Bacteriol 174:2376–2383
    [Google Scholar]
  29. Rampersaud A., Norioka S., Inouye M. 1989; Characterization of OmpR binding sequences in the upstream region of the ompF promoter essential for transcriptional activation.. J Biol Chem 264:18693–18700
    [Google Scholar]
  30. Rampersaud A., Harlocker S. L., Inouye M. 1984; The OmpR protein of Escherichia coli binds to sites in the ompF promoter region in a hierarchical manner determined by its degree of phosphorylation.. J Biol Chem 269:12559–12566
    [Google Scholar]
  31. Rogowsky P. M., Close T. J., Chimera J. A., Shaw J. J., Kado C. I. 1987; Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58.. J Bacteriol 169:5101–5112
    [Google Scholar]
  32. Rouch D. A. 1986; Plasmid-mediated copper resistance in E. coli. PhD Thesis, The University of Melbourne, Australia..
    [Google Scholar]
  33. Rouch D., Camakaris T. J., Chimera J., Lee B. T. O., Luke R. K. J. 1985; Inducible plasmid-mediated copper resistance in Escherichia coli.. J Gen Microbiol 131:939–943
    [Google Scholar]
  34. Rouch D., Lee B. T. O., Camakaris J. 1989; Genetic and molecular basis of copper resistance in Escherichia coli. In Metal lon Homeostasis : Molecular Biology and Chemistry, . Edited by D. Winge & D. Hamer. New York: Alan R. Liss.. 439–446
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory..
    [Google Scholar]
  36. Shaw W. V. 1975; Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria.. Methods Enzymol 43:737–755
    [Google Scholar]
  37. Silver S. 1992; Plasmid-determined metal resistance mechanisms.. Plasmid Special Issue79
    [Google Scholar]
  38. Silver S., Ji G. 1994; Newer systems for bacterial resistances to toxic heavy metals.. Environ Health Perspect 102:107–113
    [Google Scholar]
  39. Silver S., Lee B. T. O., Brown N. L., Cooksey D. A. 1993; Bacterial plasmid resistances to copper, cadmium, and zinc. In Chemistry of Copper and Zinc Triads, Edited by A. J. Welch & S. K. Chapman. London: The Royal Society of Chemistry.. 38–53
    [Google Scholar]
  40. Stall R. E., Loschke D. C., Jones J. B. 1986; Linkage of copper resistance and avirulence loci on a self transmissible plasmid in Xanthomonas campestris pv.. vesicatoria. Phytopathology 76:240–243
    [Google Scholar]
  41. Taylor R. K., Manoil C., Mekalanos J. J. 1989; Broad-hostrange vectors for delivery of TnphoA: use in genetic analysis of secreted virulence determinants of Vibrio cholerae.. J Bacteriol 171:1870–1878
    [Google Scholar]
  42. Tetaz T. J., Luke R. K. J. 1983; Plasmid-controlled resistance to copper in Escherichia coli.. J Bacteriol 154:1263–1268
    [Google Scholar]
  43. Titgemeyer F. 1993; Signal transduction in chemotaxis mediated by the bacterial phosphotransferase system.. J Cell Biochem 51:69–74
    [Google Scholar]
  44. Tseng H. C., Chen C. W. 1991; A cloned ompaR-like gene of Streptomyces lividans 66 suppresses defective melC1, a putative copper-transfer gene.. Mol Microbiol 5:1187–1196
    [Google Scholar]
  45. Voloudakis A. E., Bender C. L., Cooksey D. A. 1993; Similarity between copper resistance genes from Xanthomonas campestris and Pseudomonas syringae.. Appl Environ Microbiol 59:1627–1634
    [Google Scholar]
  46. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors.. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-4-1191
Loading
/content/journal/micro/10.1099/00221287-143-4-1191
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error