Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of to tellurite Free

Abstract

Tellurite and selenate reductase activities were identified in extracts of These activities were detected on non-denaturing polyacrylamide gels using an methyl viologen activity-staining technique. The activity bands produced from membrane-protein extracts had the same R values as those of nitrate reductases (NRs) A and Z. Tellurite and selenate reductase activities were absent from membranes obtained from mutants deleted in NRs A and Z. Further evidence of the tellurite and selenate reductase activities of NR was demonstrated using rocket immunoelectrophoresis analysis, where the tellurite and selenate reductase activities corresponded to the precipitation arc of NR. Additionally, hypersensitivity to potassium tellurite was observed under aerobic growth conditions in mutants. The promoter expression of NR A resulted in elevated tellurite resistance. The data obtained also imply that a minimal threshold level of NR A is required to increase resistance. Under anaerobic growth conditions additional tellurite reductase activity was identified in the soluble fraction on non-denaturing gels. Nitrate reductase mutants were not hypersensitive under anaerobic conditions, possibly due to the presence of this additional reductase activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-4-1181
1997-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/4/mic-143-4-1181.html?itemId=/content/journal/micro/10.1099/00221287-143-4-1181&mimeType=html&fmt=ahah

References

  1. Avazéri C., Prommier J., Blasco F., Giordano G., Verméglio A. 1995; Reduction of oxyanions by photosynthetic bacteria and E.coil:role of the nitrate reductase in the reduction of tellurite and selenate.In ,Photosynthesis : From Light to Biosphere,. 423–426 Edited by P. Mathis. Dordrecht : Kluwer.
    [Google Scholar]
  2. Barrnett R.J., Palade G.E. 1957; Histochemical demonstration of the sites of activity of dehydrogenase systems with the electron microscope.. J Biophys Biochem Cytol 3:577–587
    [Google Scholar]
  3. Blasco F., lobbi c., Giordano G., Chippaux M., Bonnefoy V. 1989; Nitrate reductase of the Escherichia coli: completion of the nucleotide sequence of the nar operon and reassessment of the role of the α and β subunits in iron binding and electron transfer.. Mol Gen Genet 218:249–256
    [Google Scholar]
  4. Blasco F., lobbi c., Giordano G., Ratouchniack J., Bonnefoy V., Chippaux M. 1990; Nitrate reductase of the Escherichia coli:sequence of the second nitrate reductase and comparison with the encoded by thenarGHJIoperation.. Mol Gen Genet 222:104–111
    [Google Scholar]
  5. Blasco F., Nunzi F., pommier J., Ratouchniack J., Brasseur R., Chippaux M., Giordano G. 1992; Formation of active heterologous nitrate reductases between nitrate reductases A and Z of Escherichia coli. . Mol Microbiol 6:209–219
    [Google Scholar]
  6. Bonnefoy V., Burini J.F., Giordano G., Brasseur R., Pascal M.C., Chippaux M. 1987; Presence in the silent terminus region of the Escherichia coli K-12 chromosome of cryptic gene(s) encoding a new nitrate reductase. . Mol Microbiol 1:143–150
    [Google Scholar]
  7. Boyer H.W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli.. J Mol Microbiol 41:459–472
    [Google Scholar]
  8. Casadaban M.J. 1976; Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and mu. . J Mol Biol 104:541–555
    [Google Scholar]
  9. Chippaux M., Bonnefoy V., Ratouchniack J., Pascal M.C. 1981; Operon fusions in the nitrate reductase operon and study of the control genenirR in Escherichia coli.. Mol Gen Genet 182:477–479
    [Google Scholar]
  10. Cooper W.C. (editor). 1971; In Tellurium. Edited by W. C. Cooper. New York: Van Nostrand Reinhold..
    [Google Scholar]
  11. Gerrad T.L, Telford J.N, Williams H.H. 1974; Detection of selenium deposits in Escherichia coli by electron microscopy. . J Bacteriol 119:1057–1060
    [Google Scholar]
  12. Graham A, Jenkins H.E, Smith N.H, Mandrand M.A, Haddock B.A, Boxer D.H. 1980; The synthesis of formate dehydrogenase and nitrate reductase proteins in various fdb and cbl mutants of Escherichia coli. . FEMS Microbiol Lett 7:145–151
    [Google Scholar]
  13. Guigliarelli B., Asso M., More C, Augier V, Blasco F, Pommier J., Giordano G, Bertrand p. 1992; EPR and redox characterization of iron-sulfur centers in nitrate reductases A and Z from Escherichia coli. . Eur J Biochem 207:61–68
    [Google Scholar]
  14. Guigliarelli B., Magalon A., Asso M., Bertrand P., Frixon C., Giordano G, Blasco F. 1996; Complete coordination of four Fe-S centers of the β subunit from Escherichia coli nitrate reductase. Physiological, biochemical, and EPR characterization site-directed mutants lacking the highest or lowest potential (4Fe–4S) cluster.. Biochemistry 35:4828–4836
    [Google Scholar]
  15. Hill S.M., Jobling M.G., Lloyd B.H., Ritchie D.A. 1993; Functional expression of the tellurite resistance determinant from the IncHI2 plasmid pMER610.. Mol Gen Genet 241:203–212
    [Google Scholar]
  16. Iobbi C., Jobling M.G., Santini C.L., Bennefoy V., Giordano G. 1987; Biochemical and immunological evidence for a second nitrate reductase inEscherichia coli K-12.. Eur J Biochem 168:451–459
    [Google Scholar]
  17. Iobbi-Nivol C., Santini C.L., Blasco F., Giordano G. 1990; Purification and further characterization of the second nitrate reductase of Escherichia coliK-12.. Eur J Biochem 188:679–687
    [Google Scholar]
  18. Jobling M.G., Ritchie D.A. 1987; Genetic and physical analysis of plasmid genes expressing inducible resistance to tellurite Escherichia coli.. Mol Gen Genet 208:288–293
    [Google Scholar]
  19. Jones R. W., Garland D.A. 1987; Sites and specificity of the reaction of bipyridylium compounds with anaerobic respiratory enzymes ofEscherichia coli.. Biochem J 164:199–211
    [Google Scholar]
  20. Kapraleck A., Jechova E., Otavova M. 1982; Two sites of oxygen control in induced synthesis of respiratory nitrate reductase in Escherichia coli. . J Bacteriol 149:1142–1145
    [Google Scholar]
  21. Lloyd Jones G., Osborn A.M, Ritchie D.A., Strike P., Hobman J.L., Hobman N.L., Rouch D.A. 1994; Accumulation and intracellular fate of tellurite resistant in Escherichia coli: a model for the mechanism of resistance.. FEMS Microbiol Lett 118:113–120
    [Google Scholar]
  22. Lund K., DeMoss J.A. 1976; Association-dissociation behavior and subunits structure of heat-released nitrate reductase from Escherichia coli. . J Biol Chem 251:2207–2213
    [Google Scholar]
  23. Lundquist T.J, Bailey Green F., Blake Tresan R., Newman F., Bailey Green R.D., Oswald W.J. 1994; The algal-bacterial selenium removal system: mechanisms and field study. In Selenium in the Environment,. 251–278 Edited by J. R. Frankenberger & s. Benson. New York: Marcel Dekker..
    [Google Scholar]
  24. Macy J.M. 1994; Biochemistry of selenium metabolism by Thauera selenatis gen. nov. sp. nov. and use of the organism for remediation of selenium oxyanions in San Joaquim Valley drainage water. In Selenium in the Environment,. 421–444 Edited by J. R. Frankenberger & s. Benson. New York: Marcel Dekker..
    [Google Scholar]
  25. Miller J.H. 1992; A Short Course in Bacterial Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory..
    [Google Scholar]
  26. Moore M.D., Kaplan S. 1992; Identification of intrinsic high level resistance to rare earth oxides and oxyanions in members of the class Proteobacteria : characterization of tellurite, selenite and rhodium sesquioxide reduction in Rhodobacter sphaeroides. . J Bacteriol 174:1505–1514
    [Google Scholar]
  27. Morpeth F., Boxer D. 1985; Kinetic analysis of respiratory nitrate reductase from Escherichia coli K12.. Biochemistry 24:40–46
    [Google Scholar]
  28. Oremland R.S. 1994; Biogeochemical transformations of selenium in anoxic environments. In Selenium in the Environment,. 389–420 J. R. Frankenberger & S. Benson. New York : Marcel Dekker..
    [Google Scholar]
  29. Palmar T., Santini C.L, lobbi-Nivol C., Eaves D., Boxer D., Giordano G. 1996; Involvement of the narJ and mob gene products in distinct steps in the biosynthesis of the molybdoenzyme nitrate reductase in Escherichia coli. . Mol Microbiol 20:875–884
    [Google Scholar]
  30. Pascal M.C., Burini J.F., Ratouchniak J., Chippaux M. 1982; Regulation of the nitrate reductase operon : effects of mutations in chlA, B , D and E genes.. Mol Gen Genet 188:103–106
    [Google Scholar]
  31. Sodergren E.J., De Moss J.A. 1988; narI region of the Escherichia coli nitrate reductase (nar) operon contains two genes.. J Bacteriol 170:1721–1729
    [Google Scholar]
  32. Summers A.O., Jacoby G.A. 1977; Plasmid-determined resistance to tellurium compounds.. J Bacteriol 129:276–281
    [Google Scholar]
  33. Summers A.O., Silver S. 1978; Microbial transformation of metals.. Annu Rev Microbiol 32:637–672
    [Google Scholar]
  34. Stewart V. 1982; Requirement of Fnr and NarL functions for nitrate reductase expression in Escherichia coli K-12.. J Mol Biol 151:1320–1325
    [Google Scholar]
  35. Taylor D.E, Walter R., Sherburne R., Bazette-Jones P. 1988; Structure and location of tellurium deposits in Escherichia coli cells harboring tellurite resistance plasmid.. J Ultrastruct Mol Struct Res 99:18–26
    [Google Scholar]
  36. Taylor D.E, Hou R., Sherburne R., Bazette-Jones P. 1988; Structure and location of tellurium deposits in Escherichia coli cells harboring tellurite resistance plasmid.. J Ultrastruct Mol Struct Res 99:18–26
    [Google Scholar]
  37. Turkey F.L, Walper J.F., Appleman M.D., Donohue J. 1962; Complete reduction of tellurite to pure tellurium metal by microorganisms.. J Bacteriol 83:1313–1314
    [Google Scholar]
  38. Turner R.J, Hou Y., Weiner J.H., Taylor D.E. 1992; The arsenical ATPase efflux pump mediates tellurite resistance.. J Bacteriol 174:3092–3094
    [Google Scholar]
  39. Turner R.J, Weiner J.H., Taylor D.E. 1994; In vivo complementation and site-specific mutagenesis of the tellurite resistance determinant kilAtelAB from IncPα plasmid RK2Ter.. Microbiology 140:1319–1326
    [Google Scholar]
  40. Turner R.J, Weiner J.H., Taylor D.E. 1995; The telluriteresistance determinants tehAtehBand klaAklaBtelB have different biochemical requirements.. Microbiology 141:3133–3140
    [Google Scholar]
  41. Van Iterson W, Leene W. 1964; A cytochemical localization of reductive sites in a Gram-negative bacterium.. J Cell Biol 20:377–387
    [Google Scholar]
  42. Vincent S.P., Bray R.C. 1978; Electron paramagnetic resonance studies on the nitrate reductase from Escherichia coli K-12.. Biochem J 171:639–647
    [Google Scholar]
  43. Walter E.G., Taylor D.E. 1992; Plasmid mediated resistance to tellurite : expressed and cryptic.. Plasmid 27:52–64
    [Google Scholar]
  44. Walter E.G., Thomas C.M., Ibbotson J.P., Taylor D.E. 1991; Transcriptional analysis, translational analysis and sequence of the kilA tellurite resistance region of plasmid RK2TeR.. J Bacteriol 173:1111–1119
    [Google Scholar]
  45. Zehr J.P., Oremland R.S. 1987; Reduction of selenate to selenite by sulfate-respiring bacteria : experiments with cell suspensions and estuarine sediments.. Appl Environ Microbiol 53:1365–1369
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-4-1181
Loading
/content/journal/micro/10.1099/00221287-143-4-1181
Loading

Data & Media loading...

Most cited Most Cited RSS feed