1887

Abstract

The gene, coding for single-stranded-DNA-binding protein (SSB), was cloned from four marine strains that differed in their temperature and pressure optima and ranges of growth. All four genes complemented point and deletion mutants, with efficiencies that varied with temperature and gene source. The SSBs are the largest bacterial SSBs identified to date (24.9-26.3 kDa) and may be divided into conserved amino- and carboxy-terminal regions and a highly variable central region. Greater amino acid sequence homology was observed between the SSBs as a group (72-87%) than with other bacterial SSBs (52-69%). Analysis of the amino acid composition of the SSBs revealed several features that could correlate with pressure or temperature adaptation. SSBs from the three low-temperature-adapted strains were an order of magnitude more hydrophilic than that from the mesophilic strain, and differences in the distribution of eight amino acids were identified which could contribute to either the temperature or pressure adaptation of the proteins. The SSBs from all four strains were overproduced and partially purified based upon their ability to bind single-stranded DNA. The differences found among the SSBs suggest that these proteins will provide a useful system for exploring the adaptation of protein-protein and protein-DNA interactions at low temperature and high pressure.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-4-1163
1997-04-01
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/4/mic-143-4-1163.html?itemId=/content/journal/micro/10.1099/00221287-143-4-1163&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. . J Mol Biol 215:403–410
    [Google Scholar]
  2. Brandsma J. A., Bosch D., de Ruyter M., van de Putte P. 1985; Analysis of the regulatory region of the ssb gene of Escherichia coli. . Nucleic Acids Res 13:5095–5109
    [Google Scholar]
  3. Bujalowski W, Lohman T. M. 1991; Monomer-tetramer equilibrium of the Escherichia coli ssb-1 mutant single strand binding protein. . J Biol Chem 266:1616–1626
    [Google Scholar]
  4. Curth U, Genschel j, Urbanke C, Greipel J. 1996; In vitro and in vivo function of the C-terminus of Escherichia coli singlestranded DNA binding protein. . Nucleic Acids Res 24:2706–2711
    [Google Scholar]
  5. Davis R. W., Botstein D., Roth J. R. 1980; Advanced Bacterial Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. .
    [Google Scholar]
  6. DeLong E. F., Yayanos A. A. 1986; Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes. . Appl Environ Microbiol 51:730–737
    [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. . Nucleic Acids Res 12:387–395
    [Google Scholar]
  8. Feng D. F., Doolittle R. F. 1990; Progressive alignment and phylogenetic tree construction of protein sequences. . Methods Enzymol 183:375–387
    [Google Scholar]
  9. Foguel D., Silva J. 1994; Cold denaturation of a repressoroperator complex : the role of entropy in protein-DNA recognition. . Proc Natl Acad Sci USA 91:8244–8247
    [Google Scholar]
  10. Goldstein J., Pollitt N. S., Inouye M. 1990; Major cold shock protein of Escherichia coli. . Proc Nut1 Acad Sci USA 87:283–287
    [Google Scholar]
  11. Gross M., Jaenicke R. 1994; Proteins under pressure- the influence of high hydrostatic pressure on structure, function and assembly of protein complexes. . Eur J Biochem 221:617–630
    [Google Scholar]
  12. Hammar M., Arnqvist A., Bian Z., Olsen A., Normark S. 1995; Expression of two csg operons is required for production of fibronectin- and Congo red-binding curli polymers in Escherichia coli K-12. . Mol Microbiol 18:661–670
    [Google Scholar]
  13. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. . J Mol Biol 166:557–580
    [Google Scholar]
  14. Hei D. J., Clark D. S. 1994; Pressure stabilization of proteins from extreme thermophiles. . Appl Environ Microbiol 60:932–939
    [Google Scholar]
  15. Hoffman L. M., Jendrisak J. 1990; Heat-labile phosphatase simplifies the preparation of dephosphorylated vector DNA. . Gene 88:97–99
    [Google Scholar]
  16. Hopp T. P., Woods K. R. 1981; Prediction of protein antigenic determinants from amino acid sequences. . Proc Nut1 Acad Sci USA 78:3824–3828
    [Google Scholar]
  17. Hostomski Z., Appelt K., Ogden R. C. 1989; High level expression of self-processed HIV-I protease in E. coli using a synthetic gene. . Biochem Biophys Res Commun 161:1056–1063
    [Google Scholar]
  18. Jaenicke R. 1991; Protein stability and molecular adaptation to extreme conditions. . Eur J Biochem 202:715–726
    [Google Scholar]
  19. Jannasch H. W., Wirsen C. O. 1984; Variability of pressure adaptation in deep-sea bacteria. . Arch Microbiol 139:281–288
    [Google Scholar]
  20. Jarosik G. P., Hansen E. J. 1994; Cloning and sequencing of the Haemophilus influenzae ssb gene encoding single-strand DNA-binding protein. . Gene 146:101–103
    [Google Scholar]
  21. Jensen M. J., Tebo B. M., Baumann P., Mandel M., Nealson K.H. 1980; Characterization of Alteromonas hanedai (sp. nov.), a nonfermentative luminous species of marine origin.. Curr Microbiol 3:311–315
    [Google Scholar]
  22. Johnson B. F. 1977; Genetic mapping of the lexC-113 mutation.. Mol Gen Genet 157:91–97
    [Google Scholar]
  23. Jones P. G., Krah R., Tafuri S. R., Wolffe A.P. 1992; DNA gyrase, CS7.4, and the cold shock response in Escherichia coli.. J Bacteriol 174:5798–5802
    [Google Scholar]
  24. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4.. Nature 277:680–685
    [Google Scholar]
  25. Lohman T. M., Green M. J., Beyer R. S. 1986; Large-scale overproduction and rapid purification of the Escherichia coli ssb gene product. Expression of the ssb gene under lambda PL control.. Biochemistry 25:21–25
    [Google Scholar]
  26. Ludlow J. M., Clark D. S. 1991; Engineering considerations for the application of extremophiles in biotechnology .. Crit Rev Biotechnol 10:321–345
    [Google Scholar]
  27. Macgregor R. B. 1992; Footprinting of EcoRI endonuclease at high pressure.. Biochim Biophys Acta 1129:303–345
    [Google Scholar]
  28. Merrill B. M., Williams K. R., Chase J. W., Konigsberg W. H. 1984; Photochemical cross-linking of the Escherichia coli singlestranded DNA-binding protein to oligo deoxynucleotides. Identification of phenylalanine 60 as the site of cross-linking.. J Biol Chem 259:10850–10856
    [Google Scholar]
  29. Meyer R. S., Laine P. S. 1990; The single-stranded DNA-binding protein of Escherichia coli.. Enzyme Microb Techno1 6:50–59
    [Google Scholar]
  30. Mrabet N. T., Van den Broeck A., Van den Brande I., 13 other authors . 1992; Arginine residues as stabilizing elements in proteins.. Biochemistry 31:2239–2253
    [Google Scholar]
  31. Norrander J., Kampe T., Messing J. 1983; Construction of improved M13 vectors using oligonucleotide-directed mutagenesis.. Gene 26:101–106
    [Google Scholar]
  32. Porter R. D., Black S. 1991; The single-stranded-DNA-binding protein encoded by the Escherichia coli F factor can complement a deletion of the chromosomal ssb gene.. J Bacteriol 173:2720–2723
    [Google Scholar]
  33. Porter R. D., Black S., Pannuri S., Carlson S. 1990; Use of the Escherichia coli ssb gene to prevent bioreactor takeover by plasmidless cells.. Bio/Technology 8:47–51
    [Google Scholar]
  34. Rentier-Delrue F., Mande S. C., Moyens S., Terpstra P., Mainfroid V., Goraj K., Lion M., Hol W. G. J., Martial J. A. 1993; Cloning and overexpression of the triosephosphate isomerase genes from psychrophilic and thermophilic bacteria.. J Mol Biol 229:85–93
    [Google Scholar]
  35. Robinson C. R., Sligar S. G. 1995; Hydrostatic and osmotic pressure as tools to study macromolecular recognition.. Methods Enzymol 259:395–422
    [Google Scholar]
  36. Royer C. A. 1995; Application of pressure to biochemical equilibria : the other thermodynamic variable.. Methods Enzymol 259:357–377
    [Google Scholar]
  37. Royer C. A., Chakerian A. E., Mathews K. S. 1990; Macromolecular binding equilibria in the lac repressor system : studies using high pressure fluorescence spectroscopy.. Biochem 29:4959–4966
    [Google Scholar]
  38. Royer C. A., Hinck A. P., Loh S. N., Prehoda K. E., Peng X., Jonas J., Markley J. L. 1993; Effects of amino acid substitutions on the pressure denaturation of staphylococcal nuclease as monitored by fluorescence and nuclear magnetic resonance spectroscopy.. Biochemistry 32:5222–5232
    [Google Scholar]
  39. Russell N. J. 1990; Cold adaptation of microorganisms. . Philos Trans R Soc Lond B 326:595–611
    [Google Scholar]
  40. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis k. B, Ehrlich H. A. 1998; Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase.. Science 239:487–491
    [Google Scholar]
  41. Sambrook J., Fritsch E. F., Maniatis T. 1989; Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. . Molecular Cloning: a Laboratory Manual.
    [Google Scholar]
  42. Silhavy T., Berman M. L., Enquist L. W. 1984; Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. . Experiments with Gene Fusions.
    [Google Scholar]
  43. Silva J. L., Weber G. 1993; Pressure stability of proteins. . Annu Rev Phys Chem 44:89–113
    [Google Scholar]
  44. Smith D. W. 1998; A complete yet flexible system for DNA/ protein sequence analysis using VAX/VMS computers. . Comput Appl Biosci 4:212–220
    [Google Scholar]
  45. Somero G. N. 1992a; Biochemical ecology of deep-sea animals. . Experientia 48:537–543
    [Google Scholar]
  46. Somero G. N. 1992b; Adaptations to high hydrostatic pressure. . Annu Rev Physiol 54:557–577
    [Google Scholar]
  47. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. . J Mol Biol 98:503–517
    [Google Scholar]
  48. Staden R. 1988; Methods to define and locate patterns in sequences.. Comput Appl Biosci 4:53–60
    [Google Scholar]
  49. Swofford D. L. 1991; PAUP : phylogenetic analysis using parsimony. Champaign, IL : Illinois Natural History Survey..
    [Google Scholar]
  50. Tabor S., Richardson C. C. 1985; A bacteriophage T7 RNA polymerase/promoter system for the exclusive expression of specific genes.. Proc Natl Acad Sci USA 82:1074–1078
    [Google Scholar]
  51. Tobal G. M. 1993; Purification and characterization of a malate dehydrogenase from the marine bacterium ShewanellaSC2A. Masters thesis, University of California, San Diego..
    [Google Scholar]
  52. de Vries J., Wackernagel W. 1993; Cloning and sequencing of the Serratia marcescens gene encoding a single-stranded DNAbinding protein (SSB) and its promoter region.. Gene 127:39–45
    [Google Scholar]
  53. de Vries J., Wackernagel W. 1994; Cloning and sequencing of the Proteus mirabilis gene for a single-stranded DNA-binding protein (SSB) and complementation of Escherichia coli ssb point and deletion mutations.. Microbiology 140:889–895
    [Google Scholar]
  54. de Vries J., Genschel J., Urbanke C., Thole H., Wackernagel W. The single-stranded-DNA-binding proteins (SSB) of Proteus mirabilis and Serratia marcescens.. Eur J Biochem 224:613–622
    [Google Scholar]
  55. Walker , G. C. . 1984; Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli.. Microbiol Rev 48:60–93
    [Google Scholar]
  56. Weber G. 1992; Protein Interactions.New York: Chapman & Hall.. New York:
    [Google Scholar]
  57. Welch T. J., Farewell A., Neidhardt F. C., Bartlett, D. H. 1993; Stress response in Escherichia coli induced by elevated hydrostatic pressure.. J Bacteriol 175:7170–7177
    [Google Scholar]
  58. Yayanos A. A. 1995; Microbiology to 10,500 meters in the deep sea.. Annu Rev Microbiol 49:777–805
    [Google Scholar]
  59. Yayanos A. A., Dietz A. S., Van Boxtel R. 1982; Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria.. Appl Environ Microbiol 44:1356–1361
    [Google Scholar]
  60. Zuber H. 1988; Temperature adaptation of lactate dehydrogenase. Structural, functional and genetic aspects.. Biophys Chem 29:171–179
    [Google Scholar]
  61. Zwickl P., Fabry S., Bogedain C., Haas A., Hensel R. 1990; Glyceraldehyde-3-phosphate dehydrogenase from the hyper- Received 9 August 1996; revised 24 October 1996; accepted 6 November thermophilic archaebacterium Pyrococcus woesi: characteri-zation of the enzyme, cloning and sequencing of the gene, and expression in Escherichia coli.. J Bacteriof 172:4329–4338
    [Google Scholar]
/content/journal/micro/10.1099/00221287-143-4-1163
Loading
/content/journal/micro/10.1099/00221287-143-4-1163
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error