1887

Abstract

The salt tolerance of the respiratory yeast and the fermentative yeast have been compared in glucose media. showed a better adaptation to Na and Li and maintained higher intracellular K:Na and K:Li ratios than However, showed a poorer adaptation to osmotic stress (produced by KCI and sorbitol) and exhibited reduced glycerol production as compared to In media with the non-repressing sugar galactose as carbon source, exhibited reduced glycerol production and increased sensitivity to osmotic stress. Under these conditions, , but not , utilized trehalose as a more important osmolyte than glycerol. These results suggest that the relative tolerance of yeast to the osmotic and cation toxicities of NaCl, and the underlying relative capabilities for osmolyte synthesis and cation transport, are modulated by the general catabolite control exerted by glucose.

Keyword(s): glycerol , salt stress , sodium , trehalose and yeast
Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-4-1125
1997-04-01
2021-04-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/4/mic-143-4-1125.html?itemId=/content/journal/micro/10.1099/00221287-143-4-1125&mimeType=html&fmt=ahah

References

  1. Albettyn J., Hohmann S., Prior B. A. 1994a; Characterization of the osmotic-stress response in Saccharomyces cerevisiae: osmotic stress and glucose repression regulate glycerol-3-phosphate dehydrogenase independently.. Curr Genet 25:12–18
    [Google Scholar]
  2. Albertyn J., Hohmann S., Thevelein J. M., Prior B. A. 1994b; GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway.. Mol Cell Biol 14:4135–4144
    [Google Scholar]
  3. André L., Hemming A., Adler L. 1991; Osmoregulation in Saccharomyces cerevisiae. Studies on the osmotic induction of glycerol production and glycerol 3-phosphate dehydrogenase (NAD+).. FEBS Lett 286:13–17
    [Google Scholar]
  4. Ashraf M. 1994; Breeding for salinity tolerance in plants.. Crit Rev Plant Sci 13:17–42
    [Google Scholar]
  5. Bañuelos M. A., Klein R. D., Alexander-Bowman S. J., Rodriguez-Navarro A. 1995; A potassium transporter of the yeast Schwanniomyces occidentalis homologous to the Kup system of Escherichia coli has a high concentrative capacity.. EMBO J 14:3021–3027
    [Google Scholar]
  6. Blomberg A., Adler L. 1989; Roles of glycerol and glycerol-3- phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae.. J Bacteriol 171:1087–1092
    [Google Scholar]
  7. Blomberg A., Adler L. 1992; Physiology of osmotolerance in fungi.. Adv Microb Physiol 33:145–212
    [Google Scholar]
  8. Blomberg A., Adler L. 1993; Tolerance of fungi to NaCl. In Stress Tolerance of Fungi, pp.. 209–232 Edited by D. H. Jennings. New York: Marcel Dekker..
    [Google Scholar]
  9. Brown A.D. 1990; Microbial Water Stress Physiology. New York: John Wiley & Sons..
    [Google Scholar]
  10. Brown A.D., Mackenzie K. F., Singh K. K. 1986; Selected spects of microbial osmoregulation.. FEMS Microbiol Rev 39:31–36
    [Google Scholar]
  11. Camacho M., Ramos J., Rodriguez-Navarro A. 1981; Potassium requirements of Saccharomyces cerevisiae.. Curr Microbiol 6:295–299
    [Google Scholar]
  12. Conway E.J., Armstrong W. McD. 1961; The total intracellular concentration of solutes in yeast and other plant cells and the distensibility of the plant-cell wall.. Biochem J 81:631–639
    [Google Scholar]
  13. Gaber R.F. 1992; Molecular genetics of yeast ion transport.. Int Rev Cytol 137A:299–353
    [Google Scholar]
  14. Gancedo C., Serrano R. 1989; Energy-yielding metabolism. In The Yeasts, 2nd edn vol. 3 pp.. 205–259 Edited by J. S., Harrison, A. H., Rose.New York: Academic Press..
    [Google Scholar]
  15. Garciadeblas B., Rubio F., Quintero F. J., Bañuelos M. A., Haro R., Rodriguez-Navarro A. 1993; Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae.. Mol Gen Genet 236:363–368
    [Google Scholar]
  16. Gaxiola R., de Larrinoa I. F., Villalba J. M., Serrano R. 1992; A novel and conserved salt-induced protein is an important determinant of salt tolerance in yeast.. EMBO J 11:3157–3164
    [Google Scholar]
  17. Gounalaki N., Thireos G. 1994; Yaplp, a yeast transcriptional activator that mediates multidrug resistance, regulates the metabolic stress response.. EMBO J 13:4036–4041
    [Google Scholar]
  18. Gustin M. C., Zhou X.-L., Martinac B., Kung C. 1998; A mechanosensitive ion channel in the yeast plasma membrane.. Science 242:762765
    [Google Scholar]
  19. Haro R., Garciadeblas B., Rodriguez-Navarro A. 1991; A novel P-type ATPase from yeast involved in sodium transport.. FEBS Lett 291:189–191
    [Google Scholar]
  20. Haro R., Bañuelos M. A., Quintero F. J., Rubio F., Rodriguez-Navarro A. 1993; Genetic basis of sodium exclusion and sodium tolerance in yeast. A model for plants.. Plant Physiol 89:868–874
    [Google Scholar]
  21. Hottiger T., Schmutz P., Wiemken A. 1987; Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae.. J Bacteriol 169:5518–5522
    [Google Scholar]
  22. Jennings D. H. 1993; Understanding tolerance to stress: laboratory culture versus environmental actuality. In Stress Tolerance of Fungi, pp.. 1–12 Edited by D. H. Jennings. New York: Marcel Dekker..
    [Google Scholar]
  23. Jia Z.-P., McCullough N., Martel R., Hemmingsen S., Young P. G. 1992; Gene amplification at a locus encoding a putative Na+/H+antiporter confers sodium and lithium tolerance in fission yeast.. EMBO J 11:1631–1640
    [Google Scholar]
  24. Marquez J. A., Serrano R. 1996; Multiple transduction pathways regulate the sodium-extrusion gene PMR2/ENA1 during salt stress in yeast.. FEBS Lett 382:89–92
    [Google Scholar]
  25. Rocklin R. D., Pohl C. A. 1983; Determination of carbohydrates by anion exchange chromatography with pulsed amperometric detection.. J Liquid Chromatogr 6:1577–1590
    [Google Scholar]
  26. Rodriguez-Navarro A., Asensio J. 1977; An efflux mechanism determines the low net entry of lithium in yeast.. FEBS Lett 75:169–172
    [Google Scholar]
  27. Rodriguez-Navarro A., Ortega M. D. 1982; The mechanism of sodium efflux in yeast.. FEBS Lett 138:205–208
    [Google Scholar]
  28. Serrano R. 1996; Salt tolerance in plants and microorganisms : toxicity targets and defense reponses.. Int Rev Cytol 165:1–52
    [Google Scholar]
  29. Serrano R., Gaxiola R. 1994; Microbial models and salt stress tolerance in plants.. Crit Rev Plant Sci 13:121–138
    [Google Scholar]
  30. Thevelein J. M. 1994; Signal transduction in yeast.. Yeast 10:1753–1790
    [Google Scholar]
  31. Tokuoka K. 1993; Sugar- and salt-tolerant yeast.. J Appl Bacterio 74:101–110
    [Google Scholar]
  32. Watanabe Y., Miwa S., Tamai Y. 1995; Characterization of Na+/H+-antiporter gene closely related to the salt-tolerance of yeast Zygosaccharomyces rouxii.. yeast 11:829–838
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-4-1125
Loading
/content/journal/micro/10.1099/00221287-143-4-1125
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error