Gene disruption and replacement in the rapamycin-producing Streptomyces hygroscopicus strain ATCC 29253 Free

Abstract

A system for gene disruption and replacement based on a streptomycete temperate phage vector was developed to introduce DNA in the rapamycin-producing strain ATCC 29253. This will be useful in attempts to produce, through genetic manipulation, novel forms of the therapeutically important immunosuppressive drug rapamycin. Recombinant phages were constructed from the ?31 phage derivative KC515 ( ) carrying a thiostrepton or viomycin resistance gene along with segments of the chromosome. Each of the cloned segments also contained the neomycin/kanamycin resistance gene to enable gene replacement by loss of the phage-derived DNA. Specific deletion of the entire polyketide synthase (PKS) believed to govern rapamycin biosynthesis resulted in the loss of rapamycin production. In contrast, disruption or deletion of a region predicted to encode four PKS open reading frames, or another region predicted to encode another PKS plus a cytochrome P450 hydroxylase and ferredoxin, had no effect on the production of rapamycin or nigericin, a polyether antibiotic also produced by . Therefore, may have the capacity to produce polyketides additional to rapamycin and nigericin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-3-875
1997-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/3/mic-143-3-875.html?itemId=/content/journal/micro/10.1099/00221287-143-3-875&mimeType=html&fmt=ahah

References

  1. Aparico J.F., Molnar I., Schwecke T., Konig A., Haydock S.F., Khaw L.E., Staunton J., Leadlay P.F. 1996; Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of the enzymatic domains in the modular polyketide synthase.. Gene 169:9–16
    [Google Scholar]
  2. Buttner M.J., Lewis C.G. 1992; Construction and characterization of Streptomyces coelicolor A3(2) mutants that are deficient in the nonessential hrd-encoded RNA polymerase sigma factor.. J Bacteriol 174:5165–5167
    [Google Scholar]
  3. Buttner M.J., Chater K.F., Bibb M.J. 1990; Cloning, disruption, and transcriptional analysis of three RNA polymerase sigma factor genes of Streptomyces coelicolor A3(2).. J Bacteriol 172:3367–3378
    [Google Scholar]
  4. Chakraburtty R., White J., Takano E., Bibb M.J. 1996; Cloning, characterization and disruption of a (p)ppGpp synthetase gene (relA) of Streptomyces coelicolor A3 (2).. Mol Microbiol 19:357–368
    [Google Scholar]
  5. Chater K.F. 1986; Streptomyces phages and their application to Streptomyces genetics.. In The Bacteria IX Antibiotic producing Streptomyces pp. 119–158 Queener S.E., Day L.E. Edited by Orlando, FL:: Academic Press.;
    [Google Scholar]
  6. Chater K.F., Bruton C.J. 1983; Mutational cloning in Streptomyces and the isolation of antibiotic production genes.. Gene 26:67–78
    [Google Scholar]
  7. Chater K.F., Bruton C.J. 1985; Resistance, regulatory and production genes for the antibiotic methylenomycin are clustered.. EMBO J 4:1893–1897
    [Google Scholar]
  8. Chater K.F., Lomovskaya N.D., Voeykova T.A., Sladkova I.A., Mkrtumian N.M., Muravnik G.L. 1986; Streptomyces øC31-like phages: cloning vectors, genome changes and host range.. In Biological, Biochemical and Biomedical Aspects of Actino- mycetes. Proceedings of the Sixth International Symposium on Actinomycete Biology pp. 45–53 Szabo G., Biro S., GoodFellow M. Edited by Budapest:: Academic Kvado.;
    [Google Scholar]
  9. Cortes J., Wiesmann K.E.H., Roberts G.A., Brown M.J.B., Staunton J., Leadlay P.F. 1995; Repositioning of a domain in a modular polyketide synthase to promote specific chain cleavage.. Science 268:1487–1489
    [Google Scholar]
  10. Denis F., Brzezinski R. 1991; An improved aminoglycoside resistance gene cassette for use in Gram-negative bacteria and Streptomyces.. FEMS Microbiol Lett 81:261–264
    [Google Scholar]
  11. Donadio S., McAlpine J.B., Sheldon P.J., Jackson M., Katz L. 1993; An erythromycin analog produced by reprogramming of polyketide synthesis.. Proc Natl Acad Sci USA 907119–7123
    [Google Scholar]
  12. Dumont F.J., Su Q. 1996; Mechanism of action of the immunosuppressant rapamycin.. Life Sci 58:373–395
    [Google Scholar]
  13. Hatanaka H., Kino T., Miyata S., Inamura N., Kuroda A., Goto T., Tanaka H., Okuhara M. 1988; FR-900520 and FR-900523, novel immunosuppressants isolated from a Streptomyces. II. Fermentation, isolation and physico-chemical and biological characteristics.. J Antibiot 41:1592–1601
    [Google Scholar]
  14. Hopwood D.A., Kieser T., Wright H.M., Bibb M.J. 1983; Plasmids, recombination and chromosomal mapping in Streptomyces lividans 66.. J Gen Microbiol 129:2257–2268
    [Google Scholar]
  15. Hopwood D.A., Bibb M.J., Chater K.F., Kieser T., Bruton C.J., Kieser H.M., Lydiate D.J., Smith C.P., Ward J.M., Schempf H. 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual. Norwich:: John Innes Foundation.;
    [Google Scholar]
  16. Hopwood D.A., Bibb M.J., Chater K.F., Kieser T. 1987; Plasmid and phage vectors for gene cloning and analysis in Streptomyces.. Methods Enzymol 153:116–165
    [Google Scholar]
  17. Hutchinson C.R. 1994; Drug synthesis by genetically engineered microorganisms.. Bio/Technology 12:375–380
    [Google Scholar]
  18. Hutchinson C.R., Fujii I. 1995; Polyketide synthase gene manipulation: a structure-function approach in engineering novel antibiotics.. Annu Rev Microbiol 49:201–238
    [Google Scholar]
  19. Kao C.M., Luo G., Katz L., Cane D.E., Khosla C. 1994; Engineered biosynthesis of a triketide lactone from an incomplete modular polyketide synthase.. J Am Chem Soc 116:11612–11613
    [Google Scholar]
  20. Katz L., Donadio S. 1993; Polyketide synthesis: prospects for hybrid antibiotics.. Annu Rev Microbiol 47:875–912
    [Google Scholar]
  21. Kino T., Hatanaka H., Miyata S., Inamura N., Hishiyama H., Yajima T., Goto T., Okuhara M., Kohsaka M., Aoki H., Ochiai T. 1987; FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro.. J Antibiot 40:1256–1265
    [Google Scholar]
  22. Lomovskaya N.D., Mkrtumian N.M., Gostimskaya N.C., Danilenko V.N. 1972; Characterization of temperate actino-phage øC31 isolated from Streptomyces coelicolor A3(2).. J Virol 9:258–262
    [Google Scholar]
  23. Lomovskaya N.D., Chater K.F., Mkrtumian N.M. 1980; Genetics and molecular biology of Streptomyces bacteriophages.. Microbiol Rev 44:206–229
    [Google Scholar]
  24. Lomovskaya N., Hong S.-K., Kim S.-U., Fonstein L., Furuya K., Hutchinson C.R. 1996; The Streptomyces peucetius drrC gene encodes a UvrA-like protein involved in daunorubicin resistance and production.. J Bacteriol 178:3238–3245
    [Google Scholar]
  25. Melino M.R., Sigal N.H. 1990; Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin.. J Immunol 144:251–258
    [Google Scholar]
  26. Mendez C., Chater K.F. 1987; Cloning of whiG, a gene critical for sporulation of Streptomyces coelicolor A3(2).. J Bacteriol 169:5715–5720
    [Google Scholar]
  27. Pahe A., Keller U. 1992; FK506-binding proteins from streptomycetes producing immunosuppressive macrolactones of the FK-506 type.. J Bacteriol 174:5888–5894
    [Google Scholar]
  28. Piret J.M., Chater K.F. 1985; Phage-mediated cloning of bldA, a region involved in Streptomyces coelicolor morphological development, and its analysis by genetic complementation.. J Bacteriol 163:965–972
    [Google Scholar]
  29. Sambrook J., Frisch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual. NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  30. Schwecke T., Aparicio J.F., Molnar I., Konig A., Khaw L.E., Haydock S.F., Oliynyk M., Caffrey P., Cortes J., Lester J.B., Bohm G.A., Staunton J., Leadlay P.F. 1995; The biosynthesis gene cluster for the polyketide immunosuppressant rapamycin.. Proc Natl Acad Sci USA 937839–7843
    [Google Scholar]
  31. Vezina C., Kudelski A., Sehgal S.N. 1975; Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle.. J Antibiotics 28:721–726
    [Google Scholar]
  32. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13 mpl8 and pUC19 vectors.. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-3-875
Loading
/content/journal/micro/10.1099/00221287-143-3-875
Loading

Data & Media loading...

Most cited Most Cited RSS feed