Skip to content
1887

Abstract

The species serovar WVA963 is among the 20 bacteria most frequently isolated from human subgingival plaque. The interactions of this species with streptococci are inhibited by lactose, a function associated with type 2 fimbrial surface structures in . Type 1 fimbriae mediate binding of cells to salivary proline-rich proteins. Specific polyclonal antisera against type 1 and type 2 fimbriae of T14V revealed both types of fimbriae on serovar WVA963 strain PK1259. To investigate the role of type 2 fimbriae of strain PK1259 in lactose-inhibitable coaggregations, spontaneous coaggregation-defective (Cog) mutants that failed to coaggregate with streptococci were isolated; three were chosen for study. All three mutant strains synthesized type 1 fimbriae and a 59 kDa protein; mutant strains PK2415 and PK3092 synthesized type 2 fimbriae and a 57 kDa protein. In contrast, the Cogstrain PK2407 did not agglutinate with anti-type 2 antibodies or show the 57 kDa band, suggesting that the 57 kDa protein was the type 2 fimbrial subunit. Polyclonal antiserum raised against the serovar WVA963 strain PK2399, an antibiotic-resistant derivative of wild-type PK1259, blocked coaggregation between this strain and streptococci. Anti-PK2399 serum absorbed with mutant strain PK3092 bearing type 2 fimbriae retained its blocking ability. Surface sonicates of the parent and mutant strains were adsorbed to streptococcal cells and to lactose-agarose beads. Lactose eluates from both the streptococcal cells and the affinity beads were characterized by SDS-PAGE and corresponding immunoblots using anti-PK2399 serum absorbed with Cogmutant PK3092. These blots revealed a 95 kDa putative adhesin in the parent strain PK2399 that was absent in the Cogmutant strain PK3092. These results suggest the presence of a putative 95 kDa actinomyces adhesin distinct from the 57 kDa type 2 fimbrial subunit and that this adhesin mediates lactose-inhibitable coaggregation with streptococci.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-3-835
1997-03-01
2025-05-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/3/mic-143-3-835.html?itemId=/content/journal/micro/10.1099/00221287-143-3-835&mimeType=html&fmt=ahah

References

  1. Abraham S.N., Goguen J.D., Sun D., Klemm P., Beachey E.H. 1987; Identification of two ancillary subunits of Escherichia coli type 1 fimbriae by using antibodies against synthetic oligopeptides of fim gene products. . J Bacteriol 169:5530–5535
    [Google Scholar]
  2. Brennan M.J., Cisar J.O., Vatter A.E., Sandberg A.L. 1984; Lectin-dependent attachment of Actinomyces naeslundii to receptors on epithelial cells.. Infect Immun 46:459–464
    [Google Scholar]
  3. Brennan M.J., Cisar J.O., Sandberg A.L. 1986; A 160- kilodalton epithelial cell surface glycoprotein recognized by plant lectins that inhibit the adherence of Actinomyces naeslundii. . Infect Immun 52:840–845
    [Google Scholar]
  4. Cisar J.O., Curl S.H., Kolenbrander P.E., Vatter A.E. 1983; Specific absence of type 2 fimbriae on a coaggregation-defective mutant of Actinomyces viscosus T14V.. Infect Immun 40:759–765
    [Google Scholar]
  5. Cisar J.O., David W.A., Curl S.H., Vatter A.E. 1984; Exclusive presence of lactose-sensitive fimbriae on a typical strain (WVU45) of Actinomyces naeslundii. . Infect Immun 46:453–458
    [Google Scholar]
  6. Cisar J.O., Vatter A.E., Clark W.B., Curl S.H., Hurst-Calderone S., Sandberg A.L. 1988; Mutants of Actinomyces viscosus T14V lacking type 1, type 2, or both types of fimbriae.. Infect Immun 56:2984–2989
    [Google Scholar]
  7. Cisar J.O., Barsumian E.L., Siraganian R.P., Clark W.B., Yeung M.K., Hsu S.D., Curl S.H., Vatter A.E., Sandberg A. 1991; Immunochemical and functional studies of Actinomyces viscosus T14V type 1 fimbriae with monoclonal and polyclonal antibodies directed against the fimbrial subunit.. J Gen Microbiol 137:1971–1979
    [Google Scholar]
  8. Clark W.B., Wheeler T.T., Cisar J.O. 1984; Specific inhibition of adsorption of Actinomyces viscosus T14V to saliva-treated hydroxyapatite by antibody against type 1 fimbriae.. Infect Immun 43:497–501
    [Google Scholar]
  9. Donkersloot J.A., Cisar J.O., Wax M.E., Harr R.J., Chassy B. 1985; Expression of Actinomyces viscosus antigens in Escherichia coli: cloning of a structural gene (fimA) for type 2 fimbriae.. J Bacteriol 162:1075–1078
    [Google Scholar]
  10. Gibbons R.J., Nygaard M. 1970; Interbacterial aggregation of plaque bacteria.. Arch Oral Biol 15:1397–1400
    [Google Scholar]
  11. Gibbons R.J., Hay D.I., Cisar J.O., Clark W.B. 1988; Adsorbed salivary proline-rich protein 1 and statherin: receptors for type 1 fimbriae of Actinomyces viscosus T14V-J1 on apatitic surfaces.. Infect Immun 56:2990–2993
    [Google Scholar]
  12. Handley P.S., Carter P.L., Fielding J. 1984; Streptococcus salivarius strains carry either fibrils and/or fimbriae on the cell surface.. J Bacteriol 157:64–72
    [Google Scholar]
  13. Handley P.S., Carter P.L., Wyatt J.E., Hesketh L.M. 1985; Surface structures (peritrichous fibrils and tufts of fibrils) found on Streptococcus sanguis strains may be related to their ability to coaggregate with other oral genera.. Infect Immun 47:217–227
    [Google Scholar]
  14. Hsu S.D., Cisar J.O., Sandberg A.L., Kilian M. 1994; Adhesive properties of viridans streptococcal species.. Microb Ecol Health Dis 7:125–137
    [Google Scholar]
  15. Hughes C.V., Kolenbrander P.E., Andersen R.N., Moore L.V.H. 1988; Coaggregation properties of human oral Veillonella spp.: relationship to colonization site and oral ecology.. Appl Environ Microbiol 54:1957–1963
    [Google Scholar]
  16. Hughes C.V., Andersen R.N., Kolenbrander P.E. 1992; Characterization of Veillonella atypica PK1910 adhesin-mediated coaggregation with oral Streptococcus spp.. Infect Immun 60:1178–1186
    [Google Scholar]
  17. Hultgren S.J., Duncan J.L., Schaeffer A.J., Amundsen S.K. 1990; Mannose-sensitive haemagglutination in the absence of piliation in Escherichia coli. . Mol Microbiol 4:1311–1318
    [Google Scholar]
  18. Irvin R.T., Doig P., Lee K.K., Sastry P.A., Paranchych W., Todd T., Hodges R.S. 1989; Characterization of the Pseudo-monas aeruginosa pilus adhesin: confirmation that the pilin structural protein subunit contains a human epithelial cellbinding domain.. Infect Immun 57:3720–3726
    [Google Scholar]
  19. Johnson J.L., Moore L.V.H., Kaneko B., Moore W.E.C. 1990; Actinomyces georgiae sp. nov., Actinomyces gerencseriae sp. nov., designation of two genospecies of Actinomyces naes- lundii, and inclusion of A.naeslundii serotypes II and III and Actinomyces viscosus serotype II in A.naeslundii genospecies 2.. Int J Syst Bacteriol 40:273–286
    [Google Scholar]
  20. Jones C.H., Pinkner J.S., Roth R., Heuser J., Nicholes A.V., Abraham S.N., Hultgren S.J. 1995; FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Entero- bacteriaceae. . Proc Natl Acad Sci USA 922081–2085
    [Google Scholar]
  21. Kolenbrander P.E. 1982; Isolation and characterization of coaggregation-defective mutants of Actinomyces viscosus, Actinomyces naeslundii, and Streptococcus sanguis. . Infect Immun 37:1200–1208
    [Google Scholar]
  22. Kolenbrander P.E., Andersen R.N. 1986; Multigeneric aggregations among oral bacteria: a network of independent cell- to-cell interactions.. J Bacteriol 168:851–859
    [Google Scholar]
  23. Kolenbrander P.E., Andersen R.N. 1990; Characterization of Streptococcus gordonii {S. sanguis) PK488 adhesin-mediated coaggregation with Actinomyces naeslundii PK606.. Infect Immun 58:3064–3072
    [Google Scholar]
  24. Kolenbrander P.E., London J. 1992; Ecological significance of coaggregation among oral bacteria.. Adv Microb Ecol 12:183–217
    [Google Scholar]
  25. Kolenbrander P.E., London J. 1993; Adhere today, here tomorrow: oral bacterial adherence.. J Bacteriol 175:3247–3252
    [Google Scholar]
  26. Kolenbrander P.E., Inouye Y., Holdeman L.V. 1983; New Actinomyces and Streptococcus coaggregation groups among human oral isolates from the same site.. Infect Immun 41:501–506
    [Google Scholar]
  27. Kolenbrander P.E., Andersen R.N., Moore L.V.H. 1989; Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria.. Infect Immun SI3194–3203
    [Google Scholar]
  28. Kuehn M.J., Heuser J., Normark S., Hultgren S.J. 1992; P pili in uropathogenic Escherichia coli are composite fibres with distinct fibrillar adhesive tips.. Nature 356:252–255
    [Google Scholar]
  29. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4.. Nature 227:680–685
    [Google Scholar]
  30. Lee K.K., Sheth H.B., Wong W.Y., Sherburne R., Paranchych W. , Hodges R.S., Lingwood C.A., Krivan H., Irvin R.T. 1994; The binding of Pseudomonas aeruginosa pili to glyco- sphingolipids is a tip-associated event involving the C-terminal region of the structural pilin subunit.. Mol Microbiol 11:705–713
    [Google Scholar]
  31. Lindberg F., Lund B., Johansson L., Normark S. 1987; Localization of the receptor-binding protein adhesin at the tip of the bacterial pilus.. Nature 328:84–87
    [Google Scholar]
  32. London J., Allen J. 1990; Purification and characterization of a Bacteroides loescbeii adhesin that interacts with procaryotic and eucaryotic cells.. J Bacteriol 172:2527–2534
    [Google Scholar]
  33. Mdntire F.C., Vatter A.E., Baros J., Arnold J. 1978; Mechanism of coaggregation between Actinomyces viscosus T14V and Streptococcus sanguis 34.. Infect Immun 21:978–988
    [Google Scholar]
  34. Maryanski J.H., Wittenberger C.L. 1975; Mannitol transport in Streptococcus mutans. . J Bacteriol 124:1475–1481
    [Google Scholar]
  35. Moch T., Hoschützky H., Hacker J., Kröncke K.-D., Jann K. 1987; Isolation and characterization of the ɑ-sialyl-β-2,3- galactosyl-specific adhesin from fimbriated Escherichia coli. . Proc Natl Acad Sci USA 843462–3466
    [Google Scholar]
  36. Nesbitt W.E., Beem J.E., Leung K.-P., Clark W.B. 1992; Isolation and characterization of Actinomyces viscosus mutants defective in binding salivary proline-rich proteins.. Infect Immun 60:1095–1100
    [Google Scholar]
  37. Nyvad B., Kilian M. 1987; Microbiology of the early colonization of human enamel and root surfaces in vivo.. Scand J Dent Res 95:369–380
    [Google Scholar]
  38. Rudel T., Scheuerpflug I., Meyer T.F. 1995; Neisseria PilC protein identified as type-4 pilus tip-located adhesin.. Nature 373:357–359
    [Google Scholar]
  39. Schneewind O., Model P., Fischetti V.A. 1992; Sorting of protein A to the staphylococcal cell wall.. Cell 70:267–281
    [Google Scholar]
  40. Schneewind O., Fowler A., Faull K.F. 1995; Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. . Science 268:103–106
    [Google Scholar]
  41. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.. Proc Natl Acad Sci USA 764350–4354
    [Google Scholar]
  42. Uhlin B.E., Norgren M., Båga M., Normark S. 1985; Adhesion to human cells by Escherichia coli lacking the major subunit of a digalactoside-specific pilus-adhesin.. Proc Natl Acad Sci USA 821800–1804
    [Google Scholar]
  43. Weiss E.I., London J., Kolenbrander P.E., Hand A.R., Siraganian R. 1988; Localization and enumeration of fimbria- associated adhesins of Bacteroides loescbeii. . J Bacteriol 170:1123–1128
    [Google Scholar]
  44. Yeung M.K. 1992; Conservation of an Actinomyces viscosus T14V type 1 fimbrial subunit homolog among divergent groups of Actinomyces spp.. Infect Immun 60:1047–1054
    [Google Scholar]
  45. Yeung M.K. 1995; Construction and use of integration plasmids to generate site-specific mutations in the Actinomcyes viscosus T14V chromosome.. Infect Immun 63:2924–2930
    [Google Scholar]
  46. Yeung M.K., Cisar J.O. 1988; Cloning and nucleotide sequence of a gene for Actinomyces naeslundii WVU45 type 2 fimbriae. . J Bacteriol 170:3803–3809
    [Google Scholar]
  47. Yeung M.K., Cisar J.O. 1990; Sequence homology between the subunits of two immunologically and functionally distinct types of fimbriae of Actinomyces spp.. J Bacteriol 172:2462–2468
    [Google Scholar]
  48. Yeung M.K., Chassy B.M., Cisar J.O. 1987; Cloning and expression of a type 1 fimbrial subunit of Actinomyces viscosus T14V.. J Bacteriol 169:1678–1683
    [Google Scholar]
/content/journal/micro/10.1099/00221287-143-3-835
Loading
/content/journal/micro/10.1099/00221287-143-3-835
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error