1887

Abstract

In , expression of certain genes and operons, including the fructose operon, is controlled by Cra, the pleiotropic catabolite repressor/activator protein formerly known as FruR. In this study we have demonstrated that mutant strains synthesize 10-fold less cAMP than isogenic wild-type strains, specifically when grown in fructose-containing minimal media. The glucose-specific IIA protein (IIA) of the phosphotransferase system, which activates adenylate cyclase when phosphorylated, is largely dephosphorylated in but not wild-type strains growing under these conditions. Dephosphorylation of IIAin strains apparently results from enhanced fructose operon transcription and fructose uptake. These conclusions were supported by showing that fructose-grown strains possess 2·5-fold higher fructose-1-phosphate kinase activity than fructose-grown wild-type strains. Moreover, artificially increasing fructose operon expression in cells transporting fructose dramatically decreased the activity of adenylate cyclase. The results establish that Cra indirectly regulates the activity of adenylate cyclase by controlling the expression of the fructose operon in cells growing with fructose as the sole carbon source.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-3-785
1997-03-01
2022-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/3/mic-143-3-785.html?itemId=/content/journal/micro/10.1099/00221287-143-3-785&mimeType=html&fmt=ahah

References

  1. Botsford J.L., Harman J.G. 1992; Cyclic AMP in prokaryotes.. Microbiol Rev 56:100–122
    [Google Scholar]
  2. Bruni C.B., Colantuoni V., Sbordone L, Blasi F. 1977; Biochemical and regulatory properties of E. coli K12 hisT mutants.. J Bacteriol 130:4–10
    [Google Scholar]
  3. Chin A.M., Feucht B.U., Saier M.H. 1987; Evidence for regulation of gluconeogenesis by the fructose phosphotransferase system in Salmonella typhimurium. . J Bacteriol 169:897–899
    [Google Scholar]
  4. Chin A.M., Feldheim D.A., Saier M.H. 1989; Altered transcription patterns affecting several metabolic pathways in strains of Salmonella typhimurium which overexpress the fructose regulon.. J Bacteriol 171:2424–2434
    [Google Scholar]
  5. Crasnier M., Danchin A. 1990; Characterization of Escherichia coli adenylate cyclase mutants with modified regulation.. J Gen Microbiol 136:1825–1831
    [Google Scholar]
  6. Crasnier M., Dumay V., Danchin A. 1994; The catalytic domain of Escherichia coli adenylate cyclase as revealed by deletion analysis of the cya gene.. Mol Gen Genet 243:409–416
    [Google Scholar]
  7. De Reuse H., Danchin A. 1988; The ptsH, ptsl, and crr genes of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: a complex operon with several modes of transcription.. J Bacteriol 170:3827–3837
    [Google Scholar]
  8. Dietzler D.N., Leckie M.P., Sternheim W.L., Ungar J.M., Crimmins D.L., Lewis J.W. 1979; Regulation of glycogen synthesis and glucose utilization in Escherichia coli during maintenance of the energy charge.. J Biol Chem 254:8276–8287
    [Google Scholar]
  9. Dumay V., Danchin A., Crasnier M. 1996; Regulation of Escherichia coli adenylate cyclase activity during hexose phosphate transport.. Microbiology 142:575–583
    [Google Scholar]
  10. Epstein W., Rothman-Denes L.B., Hesse J. 1975; Adenosine 3´: 5´-cyclic monophosphate as mediator of catabolite repression in Escherichia coli. . Proc Natl Acad Sci USA 722300–2304
    [Google Scholar]
  11. Feldheim D.A., Chin A.M., Nierva C.T., Feucht B.U., Cao Y.W., Xu Y.F., Sutrina S.L., Saier M.H. 1990; Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate: sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium. . J Bacteriol 172:5459–5469
    [Google Scholar]
  12. Ferenci T., Kornberg H.L. 1971; Pathway of fructose utilization by Escherichia coli. . FEBS Lett 13:127–130
    [Google Scholar]
  13. Feucht B.U., Saier M.H. Jr 1980; Fine control of adenylate cyclase by the phosphoenolpyruvate: sugar phosphotransferase systems in Escherichia coli and Salmonella typhimurium. . J Bacteriol 141:603–610
    [Google Scholar]
  14. Fraenkel D.G. 1968; The phosphoenolpyruvate-initiated pathway of fructose metabolism in Escherichia coli. . J Biol Chem 243:6458–6463
    [Google Scholar]
  15. Fiirste J.P., Pansegrau W., Frank R., Blöcker H., Scholz P., Bagdasarian M., Lanka E. 1986; Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector.. Gene 48:119–131
    [Google Scholar]
  16. Geerse R.H., Ring C.R., Schuitema A.R.J., Postma P.W. 1986; Relationship between pseudo-HPr and the PEP:fructose phosphotransferase system in Salmonella typhimurium and Escherichia coli. . Mol Gen Genet 203:435–444
    [Google Scholar]
  17. Geerse R.H., Ring C.R., Schuitema A.R.J., Postma P.W. 1989a; The PEP: fructose phosphotransferase system in Salmonella typhimurium-. FPr combines Enzyme IIIFru and pseudo-HPr activities.. Mol Gen Genet 216:517–525
    [Google Scholar]
  18. Geerse R.H., Van der Pluijm J., Postma P.W. 1989b; The repressor of the PEP: fructose phosphotransferase system is required for the transcription of the pps gene of Escherichia coli. . Mol Gen Genet 218:348–352
    [Google Scholar]
  19. Gershanovitch V.N., Bolshakova T.N., Molchanova M.L., Umyarov A.M., Dobrynina Yu.O., Grigorenko Yu.A., Erlagaeva R.S. 1989; Fructose-specific phosphoenolpyruvate- dependent phosphotransferase system of Escherichia coli: its alterations and adenylate cyclase activity.. FEMS Microbiol Rev 63:125–134
    [Google Scholar]
  20. Gilman A.G. 1970; A protein binding assay for adenosine 3´: 5´- cyclic monophosphate.. Proc Natl Acad Sci USA 67305–312
    [Google Scholar]
  21. Harman J.G., Botsford J.L. 1979; Synthesis of adenosine 3´:5´-cyclic monophosphate in Salmonella typhimurium growing in continuous culture.. J Gen Microbiol 110:243–246
    [Google Scholar]
  22. Joseph E., Bernsley C., Guiso N., Ullmann A. 1982; Multiple regulation of the activity of adenylate cyclase in Escherichia coli. . Mol Gen Genet 185:262–268
    [Google Scholar]
  23. Kolb A., Busby S., Buc H., Garges S., Adhya S. 1993; Transcriptional regulation by cAMP and its receptor protein.. Annu Rev Biochem 62:749–795
    [Google Scholar]
  24. Kornberg H.L., Elvin C.M. 1987; Location and function of fruC, a gene involved in the regulation of fructose utilization by Escherichia coli. . J Gen Microbiol 133:341–346
    [Google Scholar]
  25. Kornberg H.L., Lambourne L.T.M. 1992; Role of the phosphoenolpyruvate-dependent fructose phosphotransferase system in the utilization of mannose by Escherichia coli. . Proc R Soc Fond B 25051–55
    [Google Scholar]
  26. Kornberg H.L., Prior T.I. 1989; Fructose uptake by Escherichia coli - ‘the odd man out’ of the phosphotransferase system.. FEMS Microbiol Rev 63:193–200
    [Google Scholar]
  27. Levy S., Zeng G.Q., Danchin A. 1990; Cyclic AMP synthesis in Escherichia coli strains bearing known deletions in the pts phosphotransferase operon.. Gene 86:27–33
    [Google Scholar]
  28. Liberman E., Saffen D., Roseman S., Peterkofsky A. 1986; Inhibition of E. coli adenylate cyclase activity by inorganic orthophosphate is dependent on IIIGIC of the phosphoenolpyruvate: glycose phosphotransferase system.. Biochem Biophys Res Commun 141:1138–1144
    [Google Scholar]
  29. Lowry O.H., Carter J., Ward J.B., Glaser L. 1971; The effect of carbon and nitrogen sources on the level of metabolic intermediates in Escherichia coli. . J Biol Chem 246:6511–6521
    [Google Scholar]
  30. McCoy G.D., Doeg K.A. 1975; A simplified assay for phosphoenolpyruvate.. Anal Biochem 64:115–120
    [Google Scholar]
  31. Miller J.F. 1992 A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Osumi T., Saier M.H. 1982; Regulation of lactose permease activity by the phosphoenolpyruvate: sugar phosphotransferase system: evidence for direct binding of the glucose-specific enzyme III to the lactose permease.. Proc Natl Acad Sci USA 791457–1461
    [Google Scholar]
  33. Pardee A.B., Jacob F., Monod J. 1959; The genetic control and cytoplasmic expression of inducibility in the synthesis of fi- galactosidase of Escherichia coli. . J Mol Biol 1:165–178
    [Google Scholar]
  34. Postma P.W., Schuitema A., Kwa C. 1981; Regulation of methyl-β-galactoside permease activity in pts and crr mutants of Salmonella typhimurium. . Mol Gen Genet 181:448–453
    [Google Scholar]
  35. Postma P.W., Lengeler J.W., Jacobson G.R. 1993; Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria.. Microbiol Rev 57:543–594
    [Google Scholar]
  36. Ramseier T.M., Bledig S., Michotey V., Feghali R., Saier M.H. 1995; The global regulatory protein Cra modulates the direction of carbon flow in Escherichia coli. . Mol Microbiol 16:1157–1169
    [Google Scholar]
  37. Reiner A.M. 1977; Xylitol and D-arabitol toxicides due to derepressed fructose, galactitol, and sorbitol phosphotransferases of Escherichia coli. . J Bacteriol 132:166–173
    [Google Scholar]
  38. Reizer J., Reizer A., Kornberg H.L., Saier M.H. 1994; Sequence of the fruB gene of Escherichia coli encoding the diphosphoryl transfer protein (DTP) of the phosphoenolpyruvate : sugar phosphotransferase system.. FEMS Microbiol Lett 118:159–162
    [Google Scholar]
  39. Roy A., Danchin A. 1982; The cya locus of Escherichia coli K12: organization and gene products.. Mol Gen Genet 188:465–471
    [Google Scholar]
  40. Ryu S., Ramseier T.M., Michotey V., Saier M.H. Jr Garges S. 1995; Effect of Cra regulator on transcription of the pts operon in Escherichia coli. . J Biol Chem 270:2489–2496
    [Google Scholar]
  41. Saier M.H. Jr 1996; Cyclic AMP-independent catabolite repression in bacteria.. FEMS Microbiol Lett 138:97–103
    [Google Scholar]
  42. Saier M.H. Jr Feucht B.U. 1975; Coordinate regulation of adenylate cyclase and carbohydrate permeases by the phospho- enolpyruvate: sugar phosphotransferase system in Salmonella typhimurium. . J Biol Chem 250:7078–7080
    [Google Scholar]
  43. Saier M.H. Jr Ramseier T.M. 1996; The catabolite repressor/ activator (Cra) protein of enteric bacteria.. J Bacteriol 178:3411–3417
    [Google Scholar]
  44. Saier M.H. Jr Reizer J. 1994; The bacterial phosphotransferase system: new frontiers 30 years later.. Mol Microbiol 13:755–764
    [Google Scholar]
  45. Saier M.H. Jr Simoni R.D., Roseman S. 1970; The physiological behavior of enzyme I and heat-stable protein mutants of a bacterial phosphotransferase system.. J Biol Chem 245:5870–5873
    [Google Scholar]
  46. Saier M.H. Jr Simoni R.D., Roseman S. 1976; Sugar transport: properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system.. J Biol Chem 251:6584–6597
    [Google Scholar]
  47. Tyler B., Wishnow R., Loomis W.F. Jr Magasanik B. 1969; Catabolite repression gene of Escherichia coli. . J Bacteriol 100:809–816
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-3-785
Loading
/content/journal/micro/10.1099/00221287-143-3-785
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error