1887

Abstract

The marine purple non-sulphur bacterium strain DSM 4868 reduced dimethyl sulphoxide (DMSO) to dimethyl sulphide (DMS) chemotrophically with sulphide as electron donor. The oxidation of sulphide was correlated with the formation of polysulphides. reduced DMSO phototrophically with sulphide as well, but the amount of DMSO reduced in relation to sulphide oxidized was lower. The marine green sulphur bacterium strain DSM 8327 reduced DMSO to DMS phototrophically with sulphide and thiosulphate as electron donors. The extent of DMSO reduction was much less in the dark. Eight strains of purple sulphur bacteria - marine, brackish water and freshwater isolates - and another marine green sulphur bacterium showed a very weak capacity for DMSO reduction with sulphide or thiosulphate as electron donors in the light and dark, respectively.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-3-767
1997-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/3/mic-143-3-767.html?itemId=/content/journal/micro/10.1099/00221287-143-3-767&mimeType=html&fmt=ahah

References

  1. Andreae M.O. 1980; Dimethylsulfoxide in marine and fresh- waters.. Limnol Oceanogr 25:1054–1063
    [Google Scholar]
  2. Bradford M.M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.. Anal Biocbem 72:248–254
    [Google Scholar]
  3. Brimblecombe P., Shooter D. 1986; Photo-oxidation of dimethylsulfide in aqueous solution.. Mar Chem 19:343–353
    [Google Scholar]
  4. Brune D.C. 1995; Sulfur compounds as photosynthetic electron donors.. In Anoxygenic Phototrophic Bacteria pp. 847–870 Blankenship R.E., Madigan M.T., Bauer C.E. Edited by Dordrecht, The Netherlands: Kluwer Academic Publishers;
    [Google Scholar]
  5. Charlson R.J., Lovelock J.E., Andreae M.O., Warren S.G. 1987; Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate.. Nature 326:655–661
    [Google Scholar]
  6. Dacey J.W.H., King G.M., Wakeham S.G. 1987; Factors controlling emission of dimethylsulphide from salt marshes.. Nature 330:643–645
    [Google Scholar]
  7. Ferguson S.J., Jackson J.B., McEwan A.G. 1987; Anaerobic respiration in the Rhodospirillaceae: characterisation of pathways and evaluation of roles in redox balancing during photosynthesis.. FEMS Microbiol Rev 46:117–143
    [Google Scholar]
  8. Fischer U. 1984; Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic sulfur bacteria.. In Sulfur, its Significance for Chemistry, for the Geo-, Bio- and Cosmosphere and Technology pp. 383–107 Müller A., Krebs B. Edited by Amsterdam: Elsevier;
    [Google Scholar]
  9. Hanlon S.P., Holt R.A., Moore G.R., McEwan A.G. 1994; Isolation and characterization of a strain of Rhodobacter sulfidophilus: a bacterium which grows autotrophically with dimethylsulphide as electron donor.. Microbiology 140:1953–1958
    [Google Scholar]
  10. Hansen T.A., Veldkamp H. 1973; Rhodopseudomonas sulfidophila, nov. spec., a new species of the purple nonsulfur bacteria.. Arch Microbiol 92:45–58
    [Google Scholar]
  11. Hatton A.D., Malin G., McEwan A.G., Liss P.S. 1994a; Determination of dimethyl sulfoxide in aqueous solution by an enzyme-linked method.. Anal Chem 66:4093–4096
    [Google Scholar]
  12. Hatton A.D., Malin G., McEwan A.G. 1994b; Identification of a periplasmic dimethylsulphoxide reductase in Hypho- microbium EG grown under chemolithoheterotrophic conditions with dimethylsulphoxide as carbon source.. Arch Microbiol 162:148–150
    [Google Scholar]
  13. Imhoff J.F. 1988; Anoxygenic phototrophic bacteria.. In Methods in Aquatic Bacteriology pp. 207–240 Austin B. Edited by London: John Wiley;
    [Google Scholar]
  14. Jonkers H.M., van der Maarei M.J.E.C, Hansen T.A. 1996; Dimethylsulfoxide reduction by marine sulfate-reducing bacteria.. FEMS Microbiol Lett 136:283–287
    [Google Scholar]
  15. JØrgensen B.B., Okholm-Hansen B. 1985; Emissions of biogenic sulfur gases from a Danish estuary.. Atmos Environ 19:1737–1749
    [Google Scholar]
  16. Karsten U., Wiencke C., Kirst G.O. 1990; The β-dimethyl- sulfoniopropionate (DMSP) content of macroalgae from Antarctica and southern Chile.. Bot Mar 33:143–146
    [Google Scholar]
  17. Keller M.D., Bellows W.K., Guillard R.L. 1989; Dimethyl sulfide production in marine phytoplankton.. In Biogenic Sulfur in the Environment 393: pp. 167–182 Saltzman E.S., Cooper W.E. Edited by Washington, DC: American Chemical Society;
    [Google Scholar]
  18. Kelly D.P., Wood A.P., Jordan S.L., Padden A.N., Gorlenko V.M., Dubinina G.A. 1994; Biological production and consumption of gaseous organic sulphur compounds.. Biochem Soc Trans 22:1011–1015
    [Google Scholar]
  19. Kiene R.P. 1988; Dimethyl sulfide metabolism in salt marsh sediments.. FEMS Microbiol Ecol 53:71–78
    [Google Scholar]
  20. Kompantseva E.I. 1985; Rhodobacter euryhalinus sp. nov., a new halophilic purple bacterial species.. Mikrobiologiya 54:974–981
    [Google Scholar]
  21. Lovelock J.E., Maggs R.J., Rasmussen R.A. 1972; Atmospheric dimethyl sulphide and the natural sulphur cycle.. Nature 237:452–453
    [Google Scholar]
  22. McEwan A.G., Wetzstein H.G., Ferguson S.J., Jackson J.B. 1985; Periplasmic location of the terminal reductase for trimethylamine-N-oxide and dimethylsulphoxide respiration in the photosynthetic bacterium Rhodopseudomonas capsulata. . Biochim Biophys Acta 806:410–417
    [Google Scholar]
  23. McEwan A.G., Benson N., Bonnett T.C., Hanlon S.P., Ferguson S.J., Richardson D.J., Jackson J.B. 1991a; Bacterial nitrate and dimethylsulphoxide reductases.. Biochem Soc Trans 19:605–608
    [Google Scholar]
  24. McEwan A.G., Ferguson S.J., Jackson J.B. 1991b; Purification and properties of dimethylsulphoxide reductase from Rhodobacter capsulatus. . Biochem J 274:305–307
    [Google Scholar]
  25. Rabenstein A., Rethmeier J., Fisher U. 1995; Sulphite as intermediate sulphur compound in anaerobic sulphide oxidation to thiosulphate by marine cyanobacteria.. Z Naturforsch Sect C Biosci 50:769–774
    [Google Scholar]
  26. Reed R.H. 1983; Measurement and osmotic significance of - dimethylsulfoniopropionate in marine macroalgae.. Mar Biol Lett 34:173–181
    [Google Scholar]
  27. Rethmeier J. 1995 Untersuchungen zur Ökologie und zum Mechanismus der Sulfidadaption mariner Cyanobakterien der Ostsee. PhD thesis University of Bremen, Germany.:
    [Google Scholar]
  28. de Souza M.P., Yoch D.C. 1995a; Purification and characterization of dimethylsulfoniopropionate lyase from an Alcaligenes-like dimethyl sulfide-producing marine isolate.. Appl Environ Microbiol 61:21–26
    [Google Scholar]
  29. de Souza M.P., Yoch D.C. 1995b; Comparative physiology of dimethyl sulfide production by dimethylsulfoniopropionate lyase in Pseudomonas doudoroffii and Alcaligenes sp. strain M3A.. Appl Environ Microbiol 61:3986–3991
    [Google Scholar]
  30. Sparling G.P., Searle P.L. 1993; Dimethyl sulphoxide reduction as a sensitive indicator of microbial activity in soil: the relationship with microbial biomass and mineralization of nitrogen and sulphur.. Soil Biol Biochem 25:251–256
    [Google Scholar]
  31. Steinmetz M.A., Fischer U. 1982; Cytochromes of the green sulfur bacterium Chlorobium vibrioforme f. thiosulfatophilum, purification, characterization and sulfur metabolism.. Arch Microbiol 131:19–26
    [Google Scholar]
  32. Steudler P.A., Peterson B.J. 1984; Contribution of gaseous sulphur from salt marshes to the global sulphur cycle.. Nature 311:455–457
    [Google Scholar]
  33. Truper H.G., Pfennig N. 1992; The Family Chlorobiaceae.. In The Prokaryotes 2nd edn. pp. 3583–3592 Balows A., Tr#x00FC;per H.G., Dworkin M., Harder W., Schleifer K.-H. Edited by New York: Springer-Verlag;
    [Google Scholar]
  34. Visscher P.T., van Gemerden H. 1991; Photoautotrophic growth of Thiocapsa roseopersicina on dimethyl sulfide.. FEMS Microbiol Lett 81:247–250
    [Google Scholar]
  35. Visscher P.T., Nijburg J.W., van Gemerden H. 1990; Polysulfide utilization by Thiocapsa roseopersicina. . Arch Microbiol 155:75–81
    [Google Scholar]
  36. Weiner J.H., Rothery R.A., Sambasivarao D., Trieber C.A. 1992; Molecular analysis of dimethylsulphoxide reductase: a complex iron-sulphur molybdoenzyme of Escherichia coli. . Biochim Biophys Acta 1102:1–18
    [Google Scholar]
  37. Widdel F. 1980 Anaerober Abbau von Fettsäuren und Benzoes#x00E4;ure durch neu isolierte Arten sulfat-reduzierender Bakterien. PhD thesis University of Göttingen, Germany:
    [Google Scholar]
  38. de Wit R. 1992; Sulfide -containing environments.. Encycl Microbiol 4:105–121
    [Google Scholar]
  39. Wood P.M. 1981; The redox potential for dimethyl sulphoxide reduction to dimethyl sulphide.. FEBS Lett 124:11–14
    [Google Scholar]
  40. Zeyer J., Eicher P., Wakeham S.G., Schwarzenbach R.P. 1987; Oxidation of dimethylsulfide to dimethylsulfoxide by purple phototrophic bacteria.. Appl Environ Microbiol 13:223–228
    [Google Scholar]
  41. Zinder S.H., Brock T.D. 1978; Dimethyl sulphoxide reduction by micro-organisms.. J Gen Microbiol 105:335–342
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-3-767
Loading
/content/journal/micro/10.1099/00221287-143-3-767
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error