1887

Abstract

Electron microscopy is still the most frequently used method for visualization of subcellular structures in spite of limitations due to the preparation required to visualize the specimen. High resolution X-ray microscopy is a relatively new technique, still under development and restricted to a few large synchrotron X-ray sources. We utilized a single-shot laser (nanosecond) plasma to generate X-rays similar to synchrotron facilities to image live cells of The emission spectrum was tuned for optimal absorption by carbon-rich material. The photoresist was then scanned by an atomic force microscope to give a differential X-ray absorption pattern. Using this technique, with a sample image time of 90 min, we have visualized a distinct 152.24 nm thick consistent ring structure around cells of representing the cell wall, and distinct ‘craters’ inside, one of 570.90 nm diameter and three smaller ones, each 400 nm in diameter. This technique deserves further exploration concerning its application in the ultrastructural study of live, hydrated microbiological samples and of macromolecules.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-3-733
1997-03-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/3/mic-143-3-733.html?itemId=/content/journal/micro/10.1099/00221287-143-3-733&mimeType=html&fmt=ahah

References

  1. Arakawa H., Umemura K., Ikai A. 1992; Protein images obtained by STM, AFM and TEM.. Nature 358:171–173
    [Google Scholar]
  2. Arnsdorf M.F., Lai R. 1992; Recent progress with atomic force microscopy in biology: molecular resolution of cell membranes, constituent biomolecules, and microcrystals.. SPIE 1778:112–116
    [Google Scholar]
  3. Binning G., Rohrer H., Gerber C., Weibel E. 1982; Surface studies by scanning tunneling microscopy.. Phys Rev Lett 49:57–61
    [Google Scholar]
  4. Binning G., Gerber C., Stoll E., Albrecht R.T., Quate C.F. 1987; Atomic resolution with atomic force microscope.. Europhys Lett 3:1281–1286
    [Google Scholar]
  5. Chapin-Robertson K., Edberg S.C. 1991; Microscopy.. In Manual of Clinical Microbiology, 5th edn. pp. 29–35 Ballows A., Hausler W.J. Jr Herrman K.L., Isenberg H.D., Shadomy H.J. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Cheng P.C., Newberry S.P., Kim H.G., Wittman M.D. 1989; X-ray contact microradiography and shadow projection X-ray microscopy.. Eur J Cell Biol 48: (suppl. 25) 169
    [Google Scholar]
  7. DeMeis R. 1996; X-ray imaging. Laser plasma ‘X-rays’ living organisms.. Laser Focus WorldJune37–38
    [Google Scholar]
  8. Edstrom R.D., Meinke M.H., Yang X.R., Yang R., Elings V., Evans D.F. 1990; Direct visualization of phosphorylase-kinase complexes by scanning tunneling and atomic force microscopy.. Biopbys J 58:1437–1448
    [Google Scholar]
  9. Feder R., Banton V., Sayre D., Costa J., Baldini M., Kim B. 1985; Direct imaging of live human platelets by flash X-ray microscopy.. Science 227:63–64
    [Google Scholar]
  10. Hansma H.G., Weisenhorn A.L., Edmundson A.B., Gaub H.E., Hansma P.K. 1991; Atomic force microscopy: seeing molecules of lipid and immunoglobulin.. Clin Cbem 37:1497–1501
    [Google Scholar]
  11. Hansma H.G., Bezanilla M., Zenhausern F., Adrian M., Sinsheimer R.L. 1993; Atomic force microscopy of DNA in aqueous solutions.. Nucleic Acids Res 21:505–512
    [Google Scholar]
  12. Hoh J.H., Hansma P.K. 1992; Atomic Force Microscopy for high resolution imaging in cell biology.. Trends Cell Biol 7:208–213
    [Google Scholar]
  13. Ill C.R., Keivens V.M., Hale J.E., Nakamura K.K., Jue R.A., Cheng S., Melcher E.D., Drake B., Smith M.C. 1993; A COOH-terminal peptide confers regiospecific orientation and facilitates atomic force microscopy of an IgG/sub 1.. Biopbys J 64:919–924
    [Google Scholar]
  14. Kado M., Nekula K., Richardson M.C., Yamamoto Y., Friedman H. 1996; Direct ultrastructural imaging of macrophages using a novel X-ray contact microscopy.. FASEB J 10:A824
    [Google Scholar]
  15. Kay D. 1976; Electron microscopy of small particles, macromo-lecular structures and nucleic acids.. Methods Microbiol 9:177–215
    [Google Scholar]
  16. Lichfeld K.G. 1976; Transmission electron microscopy of bacteria.. Methods Microbiol 9:127–176
    [Google Scholar]
  17. Meyer-llse W., Gutmann P.A., Thieme J., Rudolph D., Schmahl G., Anderson E., Batson P., Attwood D., Isklander N., Kern D. 1992; Experimental characterization of zone plates for high resolution X-ray microscopy.. In X-ray Microscopy III pp. 284–289 Michette A.G., Morrison G.R., Buckley C.J. Edited by Berlin: Springer;
    [Google Scholar]
  18. Neiman B. 1992; X-ray microscopy with the Gottingen scanning X-ray microscope at 2·4 nm.. In X-ray Microscopy III pp. 143–150 Michette A.G., Morrison G.R., Buckley C.J. Edited by Berlin: Springer;
    [Google Scholar]
  19. Nui L., Shaiu W.-L., Vesenka J., Larson D.D., Henderson E. 1993; Atomic force microscopy of DNA-colloidal gold and DNA-protein interactions.. SPIE 1891:71–77
    [Google Scholar]
  20. Ohnesorge F., Binning G. 1993; True atomic resolution by atomic force microscopy through repulsive and attractive forces.. Science 260:1451–1456
    [Google Scholar]
  21. Panessa-Warren B.J., Warren J.B. 1980; Determining bio-logical fine structure by differential absorption of soft X-rays.. NY Acad Sci 342:350–367
    [Google Scholar]
  22. Rajyaguru J.M., Muszynski M.J., Kado M., Richardson M. 1995; Application of X-rays to obtain ultrastructural images of microbes and macromolecules. Abstract J9.. In Abstracts of the 95th General Meeting of the American Society for Microbiology Washington, DC, USA.:
    [Google Scholar]
  23. Rajyaguru J. M., Kado M., Nekula K., Torres D., Richardson M., Muszynski M.J. 1996a; Direct high resolution (nm scale) ultrastructural X-ray imaging of live hydrated Escherichia coli.Abstract J7.. In Abstracts of the 96th General Meeting of the American Society for Microbiology New Orleans, LA, USA:
    [Google Scholar]
  24. Rajyaguru J.M., Kado M., Nekula M., Torres D., Richardson M., Muszynski M.J. 1996b; Ultrastructural X-ray imaging and molecular modelling of hydrated biological specimens using laser plasma pulsed point X-ray sources.. FASEB J 10:A824
    [Google Scholar]
  25. Rees W.A., Keller R.W., Vesenka J.P., Yang C., Bustamante C. 1993; Scanning force microscopy imaging of transcription complexes: evidence for DNA bending in open promoter and elongation complexes.. Science 260:1646–1649
    [Google Scholar]
  26. Richardson M., Shinohara K., Tanaka K.A., Kinjo Y., Ikeda N., Kado M. 1992; Pulsed X-ray microscopy of biological specimens with laser plasma sources.. SPIE 1741:133–141
    [Google Scholar]
  27. Robinow C.F., Johnson B.F. 1991; Yeast cytology: an overview.. In The Yeasts: Yeast Organelles 4 pp. 8–120 Rose A.H., Harrison J.S. Edited by New York: Academic Press;
    [Google Scholar]
  28. Schabert F.A., Henn C., Engel A. 1995; Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy.. Science 268:92–94
    [Google Scholar]
  29. Shinohara K. 1990; Application of X-ray microscopy to mammalian cells.. In X-ray Microscopy in Biology and Medicine pp. 203–212 Shinohara K., Yada H., Kihara H., Saito T. , Edited by. Berlin: Springer;
    [Google Scholar]
  30. Tillmann R., Radmacher M., Gaub H.E. 1992; Hydrated amorphous silicon oxide surface at 3 angstrom resolution by scanning force microscopy.. Appl Phys Lett 60:3111–3113
    [Google Scholar]
  31. Wigren R., Elwing H., Erlandson E., Welin S., Lundstrom I. 1991; Structure of fibrinogen obtained by scanning force microscopy.. FEBS Lett 280:225–228
    [Google Scholar]
  32. Yang J., Takeyasu K., Shao Z. 1992; Atomic force microscopy of DNA molecules.. FEBS Lett 301:173–176
    [Google Scholar]
  33. Zasadzinski J.A., Helm C.A., Longo M.L., Weisenhorn A.L, Gould S.A., Hansma P.K. 1991; Atomic force microscopy of hydrated phosphatidylethanolamine bilayers.. Biophys J 59:755–760
    [Google Scholar]
  34. Zenhausern F., Adrian M., Heggeler-Bordier Bt., Eng L.M., Descouts P. 1992; DNA and RNA polymerase/DNA complex images by scanning force microscopy: influence of molecular- scale friction.. Scanning 14:212–217
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-3-733
Loading
/content/journal/micro/10.1099/00221287-143-3-733
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error