1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-3-693
1997-03-01
2024-09-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/3/mic-143-3-693.html?itemId=/content/journal/micro/10.1099/00221287-143-3-693&mimeType=html&fmt=ahah

References

  1. Alfano J.R., Collmer A. 1996; Bacterial pathogens in plants: life up against the wall. Plant Cell 8:1683–1698
    [Google Scholar]
  2. Alfano J.R., Bauer D.W., Milos T.M., Collmer A. 1996; Analysis of the role of the Pseudomonas syringae pv syringae HrpZ hatpin in elicitation of the hypersensitive response in tobacco using functionally non-polar hrpZ deletion mutations, truncated HrpZ fragments, and hrmA mutations. Mol Microbiol 19:715–728
    [Google Scholar]
  3. Arlat M., Van Gijsegem F., Huet J.C., Pernollet J.C., Boucher C. 1994; PopAl, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. . EMBO J 13:543–553
    [Google Scholar]
  4. Arnold D.L, Gibbon M.J., Taylor J.D., Vivian A. 1997; Specific oligonucleotide primers for the identification of Pseudomonas syringae pv.pisi yield one of two possible DNA fragments by PCR amplification: evidence for phylogenetic divergence. Physiol Mol Plant Pathol 50: (in press)
    [Google Scholar]
  5. Ashfield T., Keen N.T., Buzzell R.I., Innes R.W. 1995; Soybean resistance genes specific for different Pseudomonas syringae avirulence genes are allelic, or closely linked at the RPGllocus.. Genetics 141:1597–1604
    [Google Scholar]
  6. Barinaga M. 1996; The 'alien DNA' of virulence genes. Science 111:1262
    [Google Scholar]
  7. Bevan J.R., Taylor J.D., Crute I.R., Hunter P.J., Vivian A. 1995; Genetics of specific resistance in pea (Pisum sativum)cultivars to seven races of Pseudomonas syringae pv pisi. Plant . Pathol 44:98–108
    [Google Scholar]
  8. Bogdanove A.J., Beer S.V., Bonas U., Boucher C.A., Collmer A., Coplin D.L, Huang H.-C., Hutcheson S.W., Panopoulos N.J., Van Gijsegem F. 1996; Unified nomencla ture for broadly conserved hrp genes of phytopathogenic bacteria. Mol Microbiol 20:681–683
    [Google Scholar]
  9. Bonas U. 1994; hrp genes of phytopathogenic bacteria.. In Bacterial Pathogenesis of Plants and Animals: Molecular and Cellular Mechanisms (Current Topics in Microbiology and Immunology, 192: pp. 79–98 Dangl. J. L. Edited by Berlin:: Springer.;
    [Google Scholar]
  10. Bonas U., Stall R. E., Staskawicz B. J. 1989; Genetic and structural characterization of the avirulence gene avrBsS from Xanthomonas campestris pv.vesicatoria.. Mol Gen Genet 218:127–136
    [Google Scholar]
  11. Bonas U., Conrads-Strauch J., Balbo I. 1993; Resistance in tomato to Xanthomonas campestris pv.vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3. . Mol Gen Genet 238:261–269
    [Google Scholar]
  12. Brown I., Mansfield J., Irlam I., Conrads-Strauch J., Bonas U. 1993; Ultrastructure of interactions between Xanthomonas campestris pv.vesicatoria and pepper, including immunocyto- chemical localization of extracellular polysaccharides and the AvrBs3 protein. Mol Plant-Microbe Interact 6:376–386
    [Google Scholar]
  13. Canteros B., Minsavage G., Bonas U., Pring D., Stall R. 1991; A gene from Xanthomonas campestris pv vesicatoria that determines avirulence in tomato is related to avrBs3. . Mol Plant-Microbe Interact 4:628–632
    [Google Scholar]
  14. Carney B.F., Denny T.P. 1990; A cloned avirulence gene from Pseudomonas solanacearum determines incompatibility on Nico- tianum tabacum at the host species level . J Bacteriol 172:4836–4843
    [Google Scholar]
  15. Collmer A. 1996; Bacterial avirulence proteins: where's the action?. Trends Plant Sci 1:209–210
    [Google Scholar]
  16. Collmer A., Bauer D.W. 1994; Erwinia chrysanthemi and Pseudomonas syringae: plant pathogens trafficking in virulence proteins. . In Bacterial Pathogenesis of Plants and Animals: Molecular and Cellular Mechanisms (Current Topics in Microbiology and Immunology, 192: pp. 43–78 Dangl. J. L. Edited by Berlin:: Springer.;
    [Google Scholar]
  17. Cournoyer B., Sharp J. D., Astuto A., Gibbon M. J., Taylor J. D., Vivian A. 1995; Molecular characterization of the Pseudomonas syringae pv.pisi plasmid-borne avirulence gene avrPpiB which matches the R3 resistance locus in pea. Mol Plant-Microbe Interact 8:700–708
    [Google Scholar]
  18. Cournoyer B., Arnold D., Jackson R., Vivian A. 1996; Phylogenetic evidence for a diversification of Pseudomonas syringae pv.pisi race 4 strains into two distinct lineages. Phytopathol 86:1051–1056
    [Google Scholar]
  19. Dangl J.L. 1994; The enigmatic avirulence genes of phytopathogenic bacteria. . In Bacterial Pathogenesis of Plants and Animals: Molecular and Cellular Mechanisms (Current Topics in Microbiology and Immunology, 192: pp. 99–118 Dangl. J. L. Edited by Berlin:: Springer;
    [Google Scholar]
  20. Dangl J.L, Ritter C., Gibbon M.J., Mur L.A.J., Wood J.R., Goss S., Mansfield J., Taylor J.D., Vivan A. 1992; Functional homologs of the Arabidopsis RPMl disease resistance gene in bean and pea. Plant Cell 4:1359–1369
    [Google Scholar]
  21. De Feyter R., Yang Y., Gabriel D.W. 1993; Gene-for-genes interactions between cotton R genes and Xanthomonas campestris pv.malvacearum avr genes. Mol Plant-Microbe Interact 6:225–237
    [Google Scholar]
  22. Dye D.W., Bradbury J.F., Goto M., Hayward A.C., Lelliott R.A., Schroth M.N. 1980; International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Rev Plant Pathol 59:153–168
    [Google Scholar]
  23. Ellingboe A.H. 1976; Genetics of host-parasite interactions.. In Physiological Plant Pathology (Encyclopedia of Plant Physiology, New Series) 4: pp. 761–778 Heitefuss R., Williams. P. H. Edited by Berlin:: Springer;
    [Google Scholar]
  24. Ellingboe A.H. 1982; Genetical aspects of active defence. . In Active Defence Mechanisms in Plants, pp. 179–192 Wood. R. K. S. Edited by New York:: Plenum Press;
    [Google Scholar]
  25. Fenselau S., Bonas U. 1995; Sequence and expression analysis of the hrpB pathogenicity operon of Xanthomonas campestris pv vesicatoria which encodes eight proteins with similarity to components of the Hrp, Ysc, Spa, and Eli secretion systems. Mol Plant-Microbe Interact 8:845–854
    [Google Scholar]
  26. Fillingham A.J. 1994 Avirulence genes from Pseudomonas syringae pv. pisi controlling species specificity towards Phaseolus vulgaris L. PhD thesis, Wye College: University of London.;
    [Google Scholar]
  27. Fillingham A. J., Wood J., Bevan J. R., Crute I. R., Mansfield J. W., Taylor J. D., Vivian A. Edited by 1992; Avirulence genes from Pseudomonas syringae pathovars phaseolicola and pisi confer specificity towards both host and non-host species. Physiol Mol Plant Pathol 40:1–15
    [Google Scholar]
  28. Flor H.H. 1955; Host-parasite interactions in flax rust - its genetics and other implications. Phytopathol 45:680–685
    [Google Scholar]
  29. Gabriel D.W., Rolfe B.G. 1990; Working models of specific recognition in plant-microbe interactions. Annu Rev Phytopathol 28:365–391
    [Google Scholar]
  30. Gabriel D.W., Burges A., Lazo G.R. 1986; Gene-for-gene recognition of five cloned avirulence genes from Xanthomonas campestris pv.malvacearumby specific resistance genes in cotton.. Proc Natl Acad Sci USA 836415–6419
    [Google Scholar]
  31. Genin S., Gough C.L., Zischek C., Boucher C.A. 1992; Evidence that the hrpB gene encodes a positive regulator of pathogenicity genes from Pseudomonas solanacearum. . Mol Microbiol 6:3065–3076
    [Google Scholar]
  32. Gibbon M.J. 1994 Molecular characterization of an avirulence gene from race 2 of Pseudomonas syringae pv. pisi. PhD thesis.: University of the West of England.;
    [Google Scholar]
  33. Gopalan S., Bauer D. W., Alfano J. R., Loniello A. O., He S. Y, Collmer A. 1996a; Expression of the Pseudomonas syringae avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity (Hrp) secretion system in eliciting genotype-specific hypersensitive cell death.. Plant Cell 8:1095–1105
    [Google Scholar]
  34. Gopalan S., Wei W., He S. Y. 1996b; hrp gene-dependent induction of hinl: a plant gene activated rapidly by both hatpins and the avrPto gene-mediated signal. Plant J 10:591–600
    [Google Scholar]
  35. Grant M.R., Godiard L., Straube E., Ashfield T., Lewald J., Sattler A., Innes R.W., Dangl J.L. 1995; Structure of the Arabidopsis RPMl gene enabling dual specificity disease resistance. Science 269:843–846
    [Google Scholar]
  36. Grimm C, Aufsatz W., Panopoulos N.J. 1995; The hrpRSlocus of Pseudomonas syringae pv.phaseolicola constitutes a complex regulatory unit. Mol Microbiol 15:155–165
    [Google Scholar]
  37. He S.Y., Huang H.-C., COller A. 1993; Pseudomonas syringae pv. syringae harpinppss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73:1255–1266
    [Google Scholar]
  38. Herbers K., Conrads-Strauch J., Bonas U. 1992; Race- specificity of plant resistance to bacterial spot disease determined by repetitive motifs in a bacterial avirulence protein. Nature 356:172–174
    [Google Scholar]
  39. Hinsch M., Staskawicz B. 1996; Identification of a new Arabidopsis disease resistance locus, RPS4, and cloning of the corresponding avirulence gene, avrRps4, from Pseudomonas syringae pv.pisi. . Mol Plant-Microbe Interact 9:55–61
    [Google Scholar]
  40. Hopkins C. M., White F. F., Choi S.-H., Guo A, Leach J. E. 1992; Identification of a family of avirulence genes from Xanthomonas oryzae pv oryzae.. Mol Plant-Microbe Interact 5:451–459
    [Google Scholar]
  41. Huang H.-C., He S.Y., Bauer D.W., Collmer A. 1992; The Pseudomonas syringae pv.syringae 61 hrpH product: an envelope protein required for elicitation of the hypersensitive response in plants. J Bacteriol 174:6878–6885
    [Google Scholar]
  42. Huang H.-C., Lin R.-H., Chang C.-J., Collmer A., Deng W.-L. 1995; The complete hrp gene cluster of Pseudomonas syringaepv.syringae 61 includes two blocks of genes required for harpinppss secretion that are arranged collinearly with Yersinia ysc homo- logues.. Mol Plant-Microbe Interact 8:733–746
    [Google Scholar]
  43. Huynh T., Dahlbeck D., Staskawicz B. 1989; Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 245:1374–1377
    [Google Scholar]
  44. Innes R.W. 1996; Plant-pathogen interactions: unexpected findings on signal input and output. Plant Cell 8:133–135
    [Google Scholar]
  45. Innes R. W., Bent A. F., Kunkel B. N., Bisgrove S. R., Staskawicz B. J. 1993; Molecular analysis of avirulence gene avrRptl and identification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. J Bacteriol 175:4859–4869
    [Google Scholar]
  46. Jenner C., Hitchin E., Mansfield J., Walters K., Betteridge P., Teverson D. 1991; Gene-for-gene interactions between Pseudomonas syringae pv.phaseolicola and Phaseolus. . Mol Plant-Microbe Interact 4:553–562
    [Google Scholar]
  47. Kearney B., Staskawicz B.J. 1990; Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBsl. . Nature 346:385–386
    [Google Scholar]
  48. Kearney B., Ronald P.C., Dahibeck D., Staskawicz B.J. 1988; Molecular basis for the evasion of plant host defence in bacterial spot disease of pepper. Nature 332:541–543
    [Google Scholar]
  49. Keen N.T., Buzzell R.I. 1991; New disease resistance genes in soybean against Pseudomonas syringae pvglycinea: evidence that one of them interacts with a bacterial elicitor. Theor Appl Genet 81:133–138
    [Google Scholar]
  50. Keen N.T., Tamaki S., Kobayashi D., Gerhold D., Stayton M., Shen H., Gold S., Lorang J., Thordal-Christensen H., Dahibeck D., Staskawicz B. 1990; Bacteria expressing avirulence gene D produce a specific elicitor of the soybean hypersensitive reaction. Mol Plant-Microbe Interact 3:112–121
    [Google Scholar]
  51. Kelemu S., Leach J.E. 1990; Cloning and characterization of an avirulence gene from Xanthomonas campestris pvoryzae. . Mol Plant-Microbe Interact 3:59–65
    [Google Scholar]
  52. Kingsley M.T., Gabriel D.W., Marlow G.C., Roberts P.D. 1993; The opsX locus of Xanthomonas campestris affects host range and biosynthesis of lipopolysaccharide and extracellular polysaccharide. J Bacteriol 175:5839–5850
    [Google Scholar]
  53. Klement Z. 1982; Hypersensitivity. . In Phytopathogenic Prokaryotes, 2: pp. 149–177 Mount M. S., Lacy G. H. Edited by New York:: Academic Press.;
    [Google Scholar]
  54. Knoop V., Staskawicz B.J., Bonas U. 1991; The expression of the avirulence gene avrBsS from Xanthomonas campestris pvvesicatoria is not under the control of hrp genes and is independent of plant factors. J Bacteriol 173:7142–7150
    [Google Scholar]
  55. Kobayashi D.Y., Tamaki S.J., Keen N.T. 1989; Cloned avirulence genes from the tomato pathogen Pseudomonas syringae pvtomato confer cultivar specificity on soybean. Proc Natl Acad Sci USA 86157–161
    [Google Scholar]
  56. Kobayashi D.Y., Tamaki S.J., Keen N.T. 1990; Molecular characterization of avirulence gene D from Pseudomonas syringae pvtomato. . Mol Plant-Microbe Interact 3:94–102
    [Google Scholar]
  57. Legard D.E., Aquadro C.F., Hunter J.E. 1993; DNA sequence variation and phylogenetic relationships among strains of Pseudomonas syringae pv. syringae inferred from restriction site maps and restriction fragment length polymorphism. Appl Environ Microbiol 59:4180–188
    [Google Scholar]
  58. Lindgren P.B., Peet R.C., Panopoulos N.J. 1986; Gene cluster of Pseudomonas syringae pv."phaseolicola" controls pathogenicity of bean plants and hypersensitivity on nonhost plants. J Bacteriol 168:512–522
    [Google Scholar]
  59. Lorang J.M., Keen N.T. 1995; Characterization of avrE from Pseudomonas syringae pv.tomato: a hrp-linked avirulence locus consisting of at least two transcriptional units. Mol Plant- Microbe Interact 8:49–57
    [Google Scholar]
  60. Lorang J.M., Shen H., Kobayashi D., Cooksey D., Keen N.T. 1994; avrA and avrE in Pseudomonas syringae pv.tomato PT23 play a role in virulence on tomato plants. Mol Plant-Microbe Interact 7:508–515
    [Google Scholar]
  61. Mansfield J., Jenner C., Hockenhull R., Bennett M.A., Stewart R. 1994; Characterization of avrPphE, a gene for cultivar-specific avirulence from Pseudomonas syringae pv.phaseolicola which is physically linked to hrpY, a new hrp gene identified in the halo-blight bacterium. Mol Plant-Microbe Interact 7:726–739
    [Google Scholar]
  62. Mansfield J., Tsiamis G., Puri N., Bennett M., Jenner C., Stevens C., Teverson D., Lyons N., Taylor J. 1997; Analysis of gene-for-gene interactions between Pseudomonas syringae pvphaseolicola and Phaseolus. . In Pseudomonas syringae Pathovars and Related Pathogens. Rudolph K., Burr J. W., Mansfield T. J., Stead D., Vivian A., Von Kietzell J. Edited by Dordrecht, The Netherlands:: Kluwer Academic Publishers (in press).;
    [Google Scholar]
  63. Martin G.B., Brommonschenkel S.H., Chunwongse J., Frary A., Ganal M.W., Spivey R., Wu T., Earle E.D., Tanksley S.D. 1993; Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436
    [Google Scholar]
  64. Midland S.L., Keen N.T., Sims J.J., Midland M.M., Stayton M.M., Burton V., Smith M.J., Mazzola E.P., Graham K.J., Clardy J. 1993; The structures of syringolides 1 and 2, novel C- glycosidic elicitors from Pseudomonas syringae pv. tomato. J Org Chem 58:2940–2945
    [Google Scholar]
  65. Minsavage G.V., Dahibeck D., Whalen M.C., Kearney B., Bonas U., Staskawicz B.J. 1990; Gene-for-gene relationships specifying disease resistance in Xanthomonas camp- estris pv. vesicatoria-pepper interactions. Mol Plant-Microbe Interact 3:41–7
    [Google Scholar]
  66. Napoli C., Staskawicz B. 1987; Molecular characterization and nucleic acid sequence of an avirulence gene from race 6 of Pseudomonas syringae pv.. glycinea. J Bacteriol 169:572–578
    [Google Scholar]
  67. Parker J.E., Barber C.E., Mi-jiao F., Daniels M.J. 1993; Interaction of Xanthomonas campestris with Arabidopsis thal- iana: characterization of a gene from Xc. raphani that confers avirulence to most Athaliana accessions. Mol Plant-Microbe Interact 6:216–224
    [Google Scholar]
  68. Pirhonen M.U., Lidell M.C., Rowley D.L., Lee S.W., Jin S., Liang Y., Siiverstone S., Keen N.T., Hutcheson S.W. 1996; Phenotypic expression of Pseudomonas syringae avr genes in E. coli is linked to the activities of the hrp-encoded secretion system. Mol Plant-Microbe Interact 9:252–260
    [Google Scholar]
  69. Preston G., Huang H.-C. 1995; The HrpZ proteins of Pseudomonas syringae pvs syringae, glycinea and tomato are encoded by an operon containing Yersinia ysc homologs and elicit the hypersensitive response in tomato but not soybean. Mol Plant-Microbe Interact 8:717–732
    [Google Scholar]
  70. Reuber T.L., Ausubel F.M. 1996; Isolation of Arabidopsis genes that differentiate between resistance responses mediated by the RPS2 and RPMl disease resistance genes. Plant Cell 8:241–249
    [Google Scholar]
  71. Ritter C., Dangl J.L. 1995; The avrRpm1 gene of Pseudomonas syringae pv maculicola is required for virulence on Arabidopsis. Mol Plant-Microbe Interact 8:444–453
    [Google Scholar]
  72. Ritter C., Dangl J.L. 1996; Interference between two specific pathogen recognition events mediated by distinct plant disease resistance genes. Plant Cell 8:251–257
    [Google Scholar]
  73. Ronald P.C., Staskawicz B.J. 1988; The avirulence gene avrBsl from Xanthomonas campestris pvvesicatoria encodes a 50-kD protein. Mol Plant-Microbe Interact 1:191–198
    [Google Scholar]
  74. Ronald P.C, Salmeron J.M, Carland F.M., Staskawicz B.J. 1992; The cloned avirulence gene avrPto induces disease resistance in tomato cultivars containing the Pto resistance gene. J Bacteriol 174:1604–1611
    [Google Scholar]
  75. Rosqvist R., Magnusson K.-E., Wolf-Watz H. 1994; Target cell contact triggers expression and polarized transfer of YersiniaYopE cytotoxin into mammalian cells. EMBO J 13:964–972
    [Google Scholar]
  76. Salmeron J.M., Staskawicz B.J. 1993; Molecular characterization and hrp dependence of the avirulence gene avrProfrom Pseudomonas syringae pv. tomato. Mol Gen Genet 239:6–16
    [Google Scholar]
  77. Salmond G.P.C., Reeves P.J. 1993; Membrane traffic wardens and protein secretion in Gram-negative bacteria. Trends Biochem Sci 18:7–12
    [Google Scholar]
  78. Shen H., Keen N.T. 1993; Characterization of the promoter of avirulence gene D from Pseudomonas syringae pv. tomato. J Bacteriol 175:5916–5924
    [Google Scholar]
  79. Shintaku M.H., Kluepfel D.A., Yacoub A., Patil S.S. 1989; Cloning and partial characterization of an avirulence determinant from race 1 of Pseudomonas syringae pvphaseolicola. . Physiol Mol Plant Pathol 35:313–322
    [Google Scholar]
  80. Simonich M.T., Innes R.W. 1995; A disease resistance gene in Arabidopsis with specificity for the avrPphS gene of Pseudomonas syringae pvphaseolicola. . Mol Plant-Microbe Interact 8:637–640
    [Google Scholar]
  81. Smith M. J., Mazzola E. P., Sims J. J., Midland S. L., Keen N. T., Burton V, Stayton M.M. 1993; The syringolides: bacterial C- glycosyl lipids that trigger plant disease resistance. Tetrahedron Lett 34:223–226
    [Google Scholar]
  82. Stall R.E., Loschke D.C., Jones J.B. 1986; Linkage of copper resistance and avirulence loci on a self-transmissible plasmid in Xanthomonas campestris pvvesicatoria. . Phytopathol 76:240–243
    [Google Scholar]
  83. Swanson J., Kearney B., Dahibeck D., Staskawicz B. 1988; Cloned avirulence gene of Xanthomonas campestris pvvesicatoria complements spontaneous race-change mutants. Mol Plant-Microbe Interact 1:5–9
    [Google Scholar]
  84. Swarup S., DeFeyter R., Briansky R.H., Gabriel D.W. 1991; A pathogenicity locus from Xanthomonas citri enables strains from several pathovars of Xcampestris to elicit cankerlike lesions on citrus. Phytopathol 81:802–809
    [Google Scholar]
  85. Swarup S., Yang Y., Kingsley M.T., Gabriel D.W. 1992; A Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on nonhosts. Mol Plant-Microbe Interact 5:204–213
    [Google Scholar]
  86. Swords K.M.M., Dahibeck D., Kearney B., Roy M., Staskawicz B.J. 1996; Spontaneous and induced mutations in a single open reading frame alter both virulence and avirulence in Xanthomonas campestris pvvesicatoria avrBsZ. . J Bacterial 178:4661–669
    [Google Scholar]
  87. Tamaki S., Dahibeck D., Staskawicz B.J., Keen N.T. 1988; Characterisation and expression of two avirulence genes cloned from Pseudomonas syringae pvglycinea. . J Bacterial 170:4846–854
    [Google Scholar]
  88. Taylor C.B. 1996; Inside avirulence. Plant Cell 8:1091–1093
    [Google Scholar]
  89. Teverson D.M, Taylor J.D, Crute I.R, Kornegay J. 1997; Analysis of gene-for-gene relationship between Pseudomonas syringae pv. phaseolicola races and Phaseolus vulgaris cultivars. . Plant Pathl 46: (in press)
    [Google Scholar]
  90. Van Gijsegem F., Gough C., Zischek C, Niqueux E., Arlat M., Genin S., Barberis P., German S., Castello P., Boucher C.A. 1995; The hrp gene locus of Pseudomonas solanacearum that controls the production of a type III secretion system, encodes eight proteins related to components of the bacterial flagellar biogenesis complex. Mol Microbiol 15:1095–1114
    [Google Scholar]
  91. Vivian A., Mansfield J. 1993; A proposal for a uniform genetic nomenclature for avirulence genes in phytopathogenic pseudomonads. Mol Plant-Microbe Interact 6:9–10
    [Google Scholar]
  92. Vivian A., Errington J., Veal D. 1983; The genetics of the cherry pathogen Pseudomonas syringae pvmorsprunorum. . In Molecular Genetics of tbe Bacteria-Plant Interaction, pp. 333–339 Piuhler. A. Edited by Berlin:: Springer.;
    [Google Scholar]
  93. Wanner L.A., Mittal S., Davis K.R. 1993; Recognition of the avirulence gene avrB from Pseudomonas syringae pvglycinea by Arabidopsis thaliana. . Mol Plant-Microbe Interact 6:582–591
    [Google Scholar]
  94. Wei, Z.-M., Laby R. J., Zumoff C. H., Bauer D. W., He S. Y., Collmer A., Beer. S.V. 1992; Hatpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. . Science 257:85–88
    [Google Scholar]
  95. Wengelnik K., Bonas U. 1996; HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrpcluster of Xanthomonas campestris pv. vesicatoria. J Bacterial 178:3462–3469
    [Google Scholar]
  96. Wengelnik K., Marie C., Russel M., Bonas U. 1996; Expression and localization of HrpAl, a protein of Xanthomonas campestrispv. vesicatoria essential for pathogenicity and induction of the hypersensitive reaction. J Bacterial 178:1061–1069
    [Google Scholar]
  97. Whalen M.C., Stall R.E., Staskawicz B.I. 1988; Characterization of a gene from a tomato pathogen determining hypersensitive resistance in non-host species and genetic analysis of this resistance in bean. Proc Natl Acad Sci USA 856743–6747
    [Google Scholar]
  98. Whalen M.C., Wang J.F., Carland F.M., Heiskell M.E., Dahibeck D., Minsavage G.V., Jones J.B., Scott J.W., Stall R.E., Staskawicz B.J. 1993; Avirulence gene avrRxv from Xanthomonas campestris pvvesicatoria specifies resistance on tomato line Hawaii 7998. Mol Plant-Microbe Interact 6:616–627
    [Google Scholar]
  99. Willis D. K., Rich J. J., Hrabak E. M. 1991; hrpgenes of phytopathogenic bacteria. Mol Plant-Microbe Interact 4:132–138
    [Google Scholar]
  100. Wood J.R., Vivian A., Jenner C., Mansfield J.W., Taylor J.D. 1994; Detection of a gene in pea controlling nonhost resistance to Pseudomonas syringae pv.phaseolicola. . Mol Plant-Microbe Interact 7:534–537
    [Google Scholar]
  101. Xiao Y., Hutcheson S.W. 1994; A single promoter sequence recognised by a newly identified alternative sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae. . J Bacterial 176:3089–3091
    [Google Scholar]
  102. Xiao Y., Heu S., Yi J., Lu Y., Hutcheson S.W. 1994; Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 brpand hrmA genes. J Bacterial 176:1025–1036
    [Google Scholar]
  103. Yabuuchi E., Kosako Y., Yano I., Hotta H., Nishiuchi Y. 1995; Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb, nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropba (Davis 1969) comb. nov. Microbiol Immunol 39:897–904
    [Google Scholar]
  104. Yang Y., Gabriel D.W. 1995; Xanthomonas avirulence/ pathogenicity gene family encodes functional plant nuclear targeting signals. Mol Plant-Microbe Interact 8:627–631
    [Google Scholar]
  105. Yang Y., Yuan Q., Gabriel D.W. 1996; Watersoaking function(s) of XcmH1005 are redundantly encoded by members of the Xanthomonas avr/pth gene family. Mol Plant-Microbe Interact 9:105–113
    [Google Scholar]
  106. Young J.M., Bradbury J.F., Davis R.E., Dickey R.S., Ercolani G.L, Hayward A.C, Vidaver A.K. 1991; Nomenclatural revisions of plant pathogenic bacteria and list of names 1980-1988. Rev Plant Pathol 70:211–221
    [Google Scholar]
  107. Young J.M., Takikawa Y., Gardan L, Stead D.E. 1992; Changing concepts in the taxonomy of plant pathogenic bacteria. Ann Rev Phytopathol 30:67–105
    [Google Scholar]
  108. Young S.A., White F.F., Hopkins G.M., Leach J.E. 1994; AVRXal0 protein is in the cytoplasm of Xanthomonas oryzae pvoryzae. . Mol Plant-Microbe Interact 7:799–804
    [Google Scholar]
  109. Yucel, I., Boyd G., Debnam Q., Keen N. T. 1994a; Two different avrD alleles occur in pathovars of Pseudomonas syringae. . Mol Plant-Microbe Interact 7:131–139
    [Google Scholar]
  110. Yucel I., Slaymaker D., Boyd G., Murillo J., Buzzell R. I., Keen N. T. 1994b; Avirulence gene avrPphC from Pseudomonas syringae pvphaseolicola 3121: a plasmid-borne homologue of avrC closely linked to an avrD allele. Mol Plant-Microbe Interact 7:677–679
    [Google Scholar]
  111. Yucel I., Midland S.L, Sims J.J, Keen N.T. 1994C; Class 1 and class II avrD alleles direct the production of different products in Gram-negative bacteria. Mol Plant-Microbe Interact 7:148–150
    [Google Scholar]
/content/journal/micro/10.1099/00221287-143-3-693
Loading
/content/journal/micro/10.1099/00221287-143-3-693
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error