1887

Abstract

The antibiotic kirromycin (Kr) inhibits bacterial protein synthesis by binding to elongation factor Tu (EF-Tu). and producers of antibiotics of the Kr class, are known to possess an EF-Tu resistant to Kr. Both micro-organisms appear to possess a single gene and we have characterized the one from which belongs to the family. To assess the molecular determinants of Kr resistance, the gene was expressed in as a translational fusion to which enabled the recovery by affinity chromatography of the recombinant protein uncontaminated by the host factor. The recombinant EF-Tu was able to catalyse polyU-directed polyPhe synthesis in two heterologous cell-free systems, even as an uncleaved fusion. When tested for antibiotic sensitivity it behaved like the natural protein, showing equivalent resistance to Kr but sensitivity to the antibiotic GE2270, indicating that all determinants for Kr resistance are intrinsic to the EF-Tu sequence. Multiple sequence analysis of EF-Tu proteins, together with knowledge of mutations conferring Kr resistance, allowed the identification of key residues as likely candidates for the natural Kr resistance of the EF-Tu. One of these, Thr was mutated to the consensus Ala and the resulting mutant protein was sensitive to Kr. Interestingly, it retained some activity (30% of the control) even at. high Kr concentrations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-2-617
1997-02-01
2021-04-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/2/mic-143-2-617.html?itemId=/content/journal/micro/10.1099/00221287-143-2-617&mimeType=html&fmt=ahah

References

  1. Abdulkarim F., Liljas L., Hughes D. 1994; Mutations to kirromycin resistance occur in the interface of domains I and III of EF-Tu.GTP.. FEBS Lett 352:118–122
    [Google Scholar]
  2. Alderson G., Richtie D.A., Cappellano C., Cool R.H., Ivanova N.M., Huddleston A.S., Flaxman C.S., Kristufek V., Lounes A. 1994; Physiology and genetics of antibiotic production and resistance.. Res Microbiol 144:665–672
    [Google Scholar]
  3. Anborgh P.H., Parmeggiani A. 1991; New antibiotic that acts specifically on the GTP-bound form of elongation factor Tu.. EMBO J 10:779–784
    [Google Scholar]
  4. Berchtold H., Reshetnikova L., Reiser C.O.A., Schirmer N.K., Sprinzl M., Hilgenfeld R. 1993; Crystal structure of active elongation factor Tu reveals major domain rearrangements.. Nature 365:126–132
    [Google Scholar]
  5. Boon K., Vijgenboom E., Madsen L.V., Talems A., Kraal B., Bosch L. 1992; Isolation and functional analysis of histidine-tagged elongation factor Tu.. Eur J Biochem 210:177–183
    [Google Scholar]
  6. Cundliffe E. 1989; How antibiotic-producing organisms avoid suicide.. Annu Rev Microbiol 43:207–233
    [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX.. Nucleic Acids Res 12:387–395
    [Google Scholar]
  8. Frohlich K.-U., Wiedmann M., Lottspeich F., Mecke D. 1989; Substitution of a pentanenolactone-sensitive glyceraldehyde-3-phosphate dehydrogenase by a genetically distinct resistant isoform accompanies pentanenolactone production in Streptomyces arenae.. J Bacteriol 171:6696–6702
    [Google Scholar]
  9. Glöckner C., Wolf H. 1984; Mechanism of natural resistance to kirromycin-type antibiotics in actinomycetes.. FEMS Microbiol Lett 25:121–124
    [Google Scholar]
  10. Hopwood D.A., Bibb M.J., Chater K.F., Kieser T., Bruton C.J., Kieser H.M., Lydiate D.J., Smith C.P., Ward J.M., Schrempf H. 1985 Genetic Manipulation of Streptomyces. A Laboratory Manual. Norwich:: The John Innes Foundation.;
    [Google Scholar]
  11. Landini P., Bandera M., Goldstein B.P., Ripamonti F., Soffientini A., Islam K., Denaro M. 1992; Inhibition of bacterial protein synthesis by elongation-factor-Tu-binding antibiotics MDL 62,879 and efrotomycin.. Biochem J 283:649–652
    [Google Scholar]
  12. Landini P., Bandera M., Soffientini A., Goldstein B.P. 1993; Sensitivity of elongation-factor-Tu (EF-Tu) from different bacterial species to the antibiotics efrotomycin, pulvomycin and MDL 62879.. J Gen Microbiol 139:769–774
    [Google Scholar]
  13. Martìn J.F., Liras P. 1989; Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites.. Annu Rev Microbiol 43:173–206
    [Google Scholar]
  14. Mesters J.R., Zeef L.A.H., Hilgenfeld R., de Graaf J.M., Kraal B., Bosch L. 1994; The structural and functional basis for the kirromycin resistance of mutant EF-Tu species in Escherichia coli.. EMBO J 13:4877–4885
    [Google Scholar]
  15. Mikulik K., Zhulanova E. 1995; Sequencing of the tufl gene and the phosphorylation pattern of EF-Tu 1 during development and differentiation in Streptomyces collinus producing kirromycin.. Biochem Biophys Res Commun 213:454–461
    [Google Scholar]
  16. Ohama T., Muto A., Osawa S. 1990; Role of GC-biased mutation pressure on synonymous codon choice in Micrococcus luteus, a bacterium with a high genomic GC-content.. Nucleic Acids Res 18:1565–1569
    [Google Scholar]
  17. Parmeggiani A., Swart G.W.M. 1985; Mechanism of action of kirromycin-like antibiotics.. Annu Rev Microbiol 39:557–577
    [Google Scholar]
  18. Schrag S.J., Perrot V. 1996; Reducing antibiotic resistance.. Nature 381:120–121
    [Google Scholar]
  19. Sosio M., Amati G., Cappellano C., Sarubbi E., Monti F., Donadio S. 1996; An elongation factor Tu resistant to the EF-Tu inhibitor GE2270 in the producing organism Planobispora rosea.. Mol Microbiol 22:43–51
    [Google Scholar]
  20. Strohl W.R. 1992; Compilation and analysis of DNA sequences associated with apparent streptomycete promoters.. Nucleic Acids Res 20:961–974
    [Google Scholar]
  21. Thein-Schrammer I., Zahner H., Hopper H.-U., Hummel I., Zeeck A. 1982; Metabolic products of microorganisms. Kirrothricin, a new member of the kirromycin-group.. J Antibiot 35:948–956
    [Google Scholar]
  22. Thiara A.S., Cundliffe E. 1989; Interplay of novobiocin resistant and sensitive DNA gyrase activities in self-protection of the novobiocin producer, Streptomyces sphaeroides.. Gene 81:65–72
    [Google Scholar]
  23. Tinoco I. Jr >Borer P.N., Dengler B., Levine M.D., Uhlenbeck O.C., Crothers D.M., Gralla J. 1973; Improved estimation of secondary structure in ribonucleic acids.. Nature 246:40–41
    [Google Scholar]
  24. Traub P., Mizushima S., Lowry C.V., Nomura M. 1971; Reconstitution of ribosomes from subribosomal components.. Methods Enzymol 20:391–407
    [Google Scholar]
  25. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers.. Gene 19:259–268
    [Google Scholar]
  26. Vijgenboom E., Woudt L.P., Heinstra P.W.H., Rietveld K., van Haarlem J., van Wezel G.P., Shochat S., Bosch L. 1994; Three tuf genes in the kirromycin producer Streptomyces ramocissimus.. Microbiology 140:983–998
    [Google Scholar]
  27. Weijland A., Harmark K., Cool R.H., Anborgh P., Parmeggiani A. 1992; Elongation factor Tu: a molecular switch in protein biosynthesis.. Mol Microbiol 6:683–688
    [Google Scholar]
  28. van Wezel G.P. 1994 Transcriptional regulation of trans-lational genes in Streptomyces coelicolor A3(2). PhD Thesis University of Leiden, The Netherlands.:
    [Google Scholar]
  29. van Wezel G.P., Woudt L.P., Vervenne R., Verdurmen M.L.A., Vijgenboom E., Bosch L. 1994; Cloning and sequencing of the tuf genes of Streptomyces coelicolor A3 (2).. Biochim Biophys Acta 1219:543–547
    [Google Scholar]
  30. van Wezel G.P., Takano E., Vijgenboom E., Bosch L., Bibb M.J. 1995; The tuf3 gene of Streptomyces coelicolor A3 (2) encodes an inessential elongation factor Tu that is apparently subject to positive stringent control.. Microbiology 141:2519–2528
    [Google Scholar]
  31. Wright F., Bibb M.J. 1992; Codon usage in the G+C-rich Streptomyces genome.. Gene 113:55–65
    [Google Scholar]
  32. Zeef L.A.H., Bosch L. 1993; A technique for targeted mutagenesis of the EF-Tu chromosomal gene by M13-mediated gene replacement.. Mol Gen Genet 238:252–260
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-2-617
Loading
/content/journal/micro/10.1099/00221287-143-2-617
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error