1887

Abstract

The gene encodes an integral outer-membrane protein (Tsx) that functions as a substrate-specific channel for deoxynucleosides and the antibiotic albicidin, and also serves as a receptor for bacteriophages and colicins. We cloned the structural genes of the Tsx proteins from and and expressed them in an mutant. The heterologous Tsx proteins fully substituted the Tsx protein with respect to its function in deoxynucleoside and albicidin uptake, and as receptor for colicin The Tsx proteins from and were also proficient as receptors for several Tsx-specific bacteriophages, whereas the corresponding protein from did not confer sensitivity against these phages. The nucleotide sequence of the genes from and was established. Each of the Tsx proteins is initially synthesized with typical bacterial signal sequence peptides and the predicted mature forms of the Tsx proteins have a calculated M of 30567 (265 residues), 31412 (272 residues) and 31477 (272 residues), respectively. Multiple sequence alignments between the Tsx proteins showed a high degree of sequence identity and revealed the presence of four hypervariable regions, which are thought to constitute segments of the polypeptide chain exposed at the cell surface. Most notable was a deletion of 8 amino acids in one of these hypervariable domains in the Tsx protein. When this deletion was introduced by site-directed mutagenesis into the corresponding region of the gene, the mutant Tsx-515 protein lost its phage receptor function but still served as a colicin K receptor and as a substrate-specific channel, indicating that the region between residues 198 and 207 might be part of the bacteriophage receptor area. Multiple sequence alignments, structural predictions and the properties of previously characterized Tsx missense mutants were taken into account to develop a two-dimensional model for the topological organization of the Tsx protein within the outer membrane.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-2-603
1997-02-01
2021-07-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/2/mic-143-2-603.html?itemId=/content/journal/micro/10.1099/00221287-143-2-603&mimeType=html&fmt=ahah

References

  1. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990; Basic local alignment search tool.. J Mol Biol 215:403–410
    [Google Scholar]
  2. Bachellier S., Gilson E., Hofnung M., Hill C.W. 1996; Repeated sequences.. In Escherichia coli and Salmonella pp. 2012–2040 Neidhardt F.C. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. Benz R. 1994; Uptake of solutes through bacterial outer membranes.. In Bacterial Cell Wall pp. 397–423 Ghuyen J.-M., Hakenbeck R. Edited by Amsterdam: Elsevier Science Publishing;
    [Google Scholar]
  4. Benz R., Schmid A., Maier C., Bremer E. 1988; Charac-terization of the nucleoside-binding site inside the Tsx channel of Escherichia coli outer membrane.Reconstitution experiments with lipid bilayer membranes.. Eur JBiochem 176:699–705
    [Google Scholar]
  5. Birch R.G., Pemberton J.M., Basnayake W.V.S. 1990; Stable albicidin resistance in Escherichia coli involves an altered outer- membrane nucleoside uptake system.. J Gen Microbiol 136:51–58
    [Google Scholar]
  6. Bradley D.E., Howard S.P. 1992; A new colicin that adsorbs to outer membrane protein Tsx but is dependent on the tonB instead of the tolQ membrane transport system.. J Gen Microbiol 138:2721–2724
    [Google Scholar]
  7. Braun G., Cole S.T. 1984; DNA sequence analysis of the Serratia marcescens ompA gene: implications for the organization of an enterobacterial outer membrane protein.. Mol Gen Genet 195:321–328
    [Google Scholar]
  8. Bremer E., Gerlach P., Middendorf A. 1988; Double negative and positive control of tsx expression in Escherichia coli.. J Bacteriol 170:108–116
    [Google Scholar]
  9. Bremer E., Middendorf A., Martinussen J., Valentin-Hansen P. 1990; Analysis of the tsx gene, which encodes a nucleoside- specific channel-forming protein (Tsx) in the outer membrane of Escherichia coli.. Gene 96:59–65
    [Google Scholar]
  10. Carter P., Bedouelle H., Winter G. 1985; Improved oligo-nucleotide site-directed mutagenesis using M13 vectors.. Nucleic Acids Res 13:4431–4443
    [Google Scholar]
  11. Casadaban M.J. 1976; Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage Lambda and Mu.. J Mol Biol 104:541–555
    [Google Scholar]
  12. Cowan S.W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R.A., Jansonius J.N., Rosenbusch J.P. 1992; Crystal structures explain functional properties of two E. coli porins.. Nature 358:727–733
    [Google Scholar]
  13. Dahl M., Francoz E., Saurin W., Boos W., Manson M.D., Hofnung M. 1989; Comparison of sequences from the malB regions of Salmonella typhimurium and Enterobacter aerogenes with Escherichia coli K-12: a potential new regulatory site in the interoperonic region.. Mol Gen Genet 218:199–207
    [Google Scholar]
  14. Dale R.M.K., McClure B.A., Houchins J.P. 1985; A rapid single-stranded cloning strategy for producing a sequential series of overlapping clones for use in DNA sequencing: application to sequencing the corn mitochondrial 18S rDNA.. Plasmid 13:31–40
    [Google Scholar]
  15. Deng W.P., Nickoloff J.A. 1992; Site-directed mutagenesis of virtually any plasmid by eliminating a unique site.. Anal Biochem 200:81–88
    [Google Scholar]
  16. Elledge S.J., Walker G.C. 1985; Phasmid vectors for identification of genes by complementation of Escherichia coli mutants.. J Bacteriol 162:777–783
    [Google Scholar]
  17. Fsihi H., Kottwitz B., Bremer E. 1993; Single amino acid substitutions affecting the substrate specificity of the Escherichia coli K-12 nucleoside-specific Tsx channel.. J Biol Chem 268:17495–17503
    [Google Scholar]
  18. Gerbl-Rieger S., Peters J., Kellermann J., Lottspeich F., Baumeister W. 1991; Nucleotide and derived amino acid sequences of the major porin of Comamonas acidovorans and comparison of porin primary structures.. J Bacteriol 173:2196–2205
    [Google Scholar]
  19. Gerlach P., Sogaard-Andersen L., Pedersen H., Martinussen J., Valentin-Hansen P., Bremer E. 1991; The cyclic AMP (cAMP)-cAMP receptor protein complex functions both as an activator and as a corepressor at the tsx-p2 promoter of Escherichia coli K-12.. J Bacteriol 173:5419–5430
    [Google Scholar]
  20. Hantke K. 1976; Phage T6-Colicin K receptor and nucleoside transport in Escherichia coli.. FEBS Lett 70:109–112
    [Google Scholar]
  21. Hofnung M. 1995; An intelligent channel (and more).. Science 267:473–474
    [Google Scholar]
  22. Huang H., Jeanteur D., Pattus F., Hancock R.E.W. 1995; Membrane topology and site-specific mutagenesis of Pseudomonas aeruginosa porin OprD.. Mol Microbiol 16:931–941
    [Google Scholar]
  23. Huynh T.V., Young R.A., Davis R.W. 1985; Constructing and screening cDNA libraries in λgtlO and λgtl.. In DNA Cloning pp. 49–78 Glover D.M. Edited by Oxford: IRL Press;
    [Google Scholar]
  24. Inoue T., Matsuzaki S., Tanaka S. 1995; Cloning and sequence analysis of Vibrio parabaemolyticus ompK gene encoding a 26 kDa outer membrane protein, OmpK, that serves as receptor for broad-host-range vibriophage, KVP40.. FEMS Microbiol Lett 134:245–249
    [Google Scholar]
  25. Jeanteur D., Lakey J.H., Pattus F. 1991; The bacterial porin superfamily: sequence alignment and structure prediction.. Mol Microbiol 5:2153–2164
    [Google Scholar]
  26. Jeanteur D., Lakey J.H., Pattus F. 1994; The porin super-family : diversity and common features.. In Bacterial Cell Wall pp. 363–380 Ghuysen J.R., Hakenbeck R. Edited by Amsterdam: Elsevier Science Publishing;
    [Google Scholar]
  27. Killmann H., Benz R., Braun V. 1993; Conversion of the FhuA transport protein into a diffusion channel through the outer membrane of Escherichia coli.. EMBO J 12:3007–3016
    [Google Scholar]
  28. Kreusch A., Schulz G.E. 1994; Refined structure of the porin from Rhodopseudomonas blastica. Comparison with the porin from Rhodobacter capsulatus.. J Mol Biol 243:891–905
    [Google Scholar]
  29. Krieger-Brauer H.J., Braun V. 1980; Functions related to the receptor protein specified by the tsx gene of Escherichia coli.. Arch Microbiol 124:233–242
    [Google Scholar]
  30. van der Ley P., de Graaf P., Tommassen J. 1987; A comparative study on the phoE genes of three enterobacterial species. Implications for structure-function relationships in a pore-forming protein of the outer membrane.. Eur J Biochem 164:469–475
    [Google Scholar]
  31. Lucht J.M., Boos W., Bremer E. 1992; Alignment of genes from the 9 minute region (araj to tsx) of the Escherichia coli K- 12 linkage map to the physical map.. J Bacteriol 174:1709–1710
    [Google Scholar]
  32. Maier C., Bremer E., Schmid A., Benz R. 1988; Pore-forming activity of the Tsx protein from the outer membrane of Escherichia coli. Demonstration of a nucleoside-specific binding site.. J Biol Chem 263:2493–2499
    [Google Scholar]
  33. Maier C., Middendorf A., Bremer E. 1990; Analysis of a mutated T6 receptor protein of Escherichia coli.. Mol Gen Genet 221:491–494
    [Google Scholar]
  34. Manning P.A., Reeves P. 1978; Outer membrane proteins of Escherichia coli K-12: isolation of a common receptor protein for bacteriophage T6 and colicin K.. Mol Gen Genet 158:279–286
    [Google Scholar]
  35. Michaelis S., Beckwith J. 1982; Mechanism of incorporation of cell envelope proteins in Escherichia coli.. Annu Rev Microbiol 36:435–365
    [Google Scholar]
  36. Miller J.H. 1992 A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Nikaido H. 1994; Porins and specific diffusion channels in bacterial outer membranes.. J Biol Chem 269:3905–3908
    [Google Scholar]
  38. Pilsl H., Braun V. 1995; Novel colicin 10: assignment of four domains to TonB- and TolC-dependent uptake via the Tsx receptor and to pore formation.. Mol Microbiol 16:57–67
    [Google Scholar]
  39. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors.. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  41. Schirmer T., Keller T.A., Wang Y.-F., Rosenbusch J.P. 1995; Structural basis for sugar translocation through maltoporin channels at 3·1 Å resolution.. Science 267:512–514
    [Google Scholar]
  42. Schneider H., Fsihi H., Kottwitz B., Mygind B., Bremer E. 1993; Identification of a segment of the Escherichia coli Tsx protein that functions as a bacteriophage receptor area.. J Bacteriol 175:2809–2817
    [Google Scholar]
  43. Sprenger G.A., Lengeler J.W. 1984; L-Sorbose metabolism in Klebsiella pneumoniae and Sor+ derivatives of Escherichia coli K- 12 and chemotaxis toward sorbose.. J Bacteriol 157:39–45
    [Google Scholar]
  44. Struyvé M., Moons M., Tommassen J. 1991; Carboxy- terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein.. J Mol Biol 218:141–148
    [Google Scholar]
  45. Takeshita S., Sato M., Toba M., Masahashi W., Hashimoto-Gotoh T. 1987; High-copy-number and low-copy-number plasmids for lacZ α-complementation and chloramphenicol- or kanamycin-resistance selection.. Gene 61:63–74
    [Google Scholar]
  46. Valentin-Hansen P., Sogaard-Andersen L., Pedersen H. 1996; A flexible partnership: the CytR anti-activator and the cAMP- CRP activator protein, comrades in transcriptional control.. Mol Microbiol 20:461–466
    [Google Scholar]
  47. Way J.G, Davis M.A., Morisato D., Roberts D.E., Kleckner N. 1984; New TnlO derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition.. Gene 32:369–379
    [Google Scholar]
  48. Weiss M.S., Kreusch A., Schiltz E., Nestel U., Welte W., Weckesser J., Schulz G.E. 1991; The structure of porin from Rhodobacter capsulatus at 1-8 A resolution.. FEBS Lett 280:379–382
    [Google Scholar]
  49. Werts C., Charbit A., Bachellier S., Hofnung M. 1992; DNAsequence analysis of the lamB gene from Klebsiella pneumoniae. Implications for the topology and the pore functions in maltoporin.. Mol Gen Genet 233:372–378
    [Google Scholar]
  50. Zalkin H., Nygaard P. 1996; Biosynthesis of purine nucleotides.. In Escherichia coli and Salmonella pp. 561–579 Neidhardt F.C. Edited by Washington: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-2-603
Loading
/content/journal/micro/10.1099/00221287-143-2-603
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error