Missense mutations in the 3' end of the gene do not abolish primase activity but do confer the chromosome-segregation-defective () phenotype Free

Abstract

Isogenic strains of with the and alleles in the MG1655 chromosomal background displayed the classic phenotype at the nonpermissive temperature of 42 �. These strains synthesized DNA at 42 �, but remained chromosome segregation defective as determined by cytology. A strain with the allele was tested for its ability to support DNA replication of a primase-dependent G4ori-containing M13 phage derivative by quantitative competitive PCR (QC-PCR). The strain converted the single-stranded DNA into double-stranded replicative form DNA at 42 �. These results indicate that DnaG2903 retains primase activity at the restrictive temperature. Nucleoids remained unsegregated in the central region of cell filaments at 42 �. The observed suppression of cell filamentation in or double mutants suggests that the SOS response is induced at the restrictive temperature in and strains but fails to account entirely for the cell filamentation phenotype. ParB and DnaG2903 presumably can synthesize primer RNA for DNA replication, but may be defective in their interactions with DNA replication proteins, cell cycle regulatory factors, or the chromosome segregation apparatus itself.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-2-585
1997-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/2/mic-143-2-585.html?itemId=/content/journal/micro/10.1099/00221287-143-2-585&mimeType=html&fmt=ahah

References

  1. Adams D.E., Shekhtman E.M., Zechiedrich E.L., Schmid M.B., Cozzarelli N.R. 1992; The role of topoisomerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication.. Cell 71:277–288
    [Google Scholar]
  2. Bianco P.R., Weinstock G.M. 1994; Automated determination of β-galactosidase specific activity.. Biotechniques 17:974–980
    [Google Scholar]
  3. Bouche J.P., Rowen L., Kornberg A. 1978; The RNA primer synthesized by primase to initiate phage G4 DNA replication.. J Biol Chem 253:765–769
    [Google Scholar]
  4. Britton R.A., Lupski J.R. 1995; Functional analysis of mutations in the transcription terminator T1 that suppress two dnaG alleles in Escherichia coli.. Mol Gen Genet 246:729–733
    [Google Scholar]
  5. Britton R.A., Lupski J.R. 1997; Segregation of the bacterial chromosome.. In Bacterial Genomes: Physical Structure and Analysis. Edited by de Bruijn F. J., Lupski J. R., Weinstock G. M. New York, NY: Chapman & Hall (in press);
    [Google Scholar]
  6. de Bruijn F.J., Rossbach S. 1994; Transposon mutagenesis.. In Methods for General and Molecular Bacteriology pp. 387–405 Edited by Gerhardt P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Calos M.P. 1978; DNA sequence for a low-level promoter of the lac repressor gene and an ‘up’ promoter mutation.. Nature 274:762–765
    [Google Scholar]
  8. Carl P.L. 1970; Escherichia coli mutants with temperature-sensitive synthesis of DNA.. Mol Gen Genet 109:107–122
    [Google Scholar]
  9. Churchward G., Belin D., Nagamine Y. 1984; A pSClOl- derived plasmid which shows no sequence homology to other commonly used cloning vectors.. Gene 31:165–171
    [Google Scholar]
  10. Elliott T., Roth J.R. 1988; Characterization of Tnl0d-Cam: a transposition-defective Tn10 specifying chloramphenicol resistance.. Mol Gen Genet 213:332–338
    [Google Scholar]
  11. van der Ende A., Baker T.A., Ogawa T., Kornberg A. 1985; Initiation of enzymatic replication at the origin of the Escherichia coli chromosome: primase as the sole priming enzyme.. Proc Natl Acad Sci USA 823954–3958
    [Google Scholar]
  12. Grompe M., Versalovic J., Koeuth T., Lupski J.R. 1991; Mutations in the Escherichia coli dnaG gene suggest coupling between DNA replication and chromosome partitioning.. J Bacteriol 173:1268–1278
    [Google Scholar]
  13. Gross J.D. 1972; DNA replication in bacteria.. Curr Top Microbiol Immunol 57:39–74
    [Google Scholar]
  14. Heath J.D., Perkins J.D., Sharma B., Weinstock G. 1992; Notl genomic cleavage map of Escherichia coli K-12 strain MG1655.. J Bacteriol 174:558–567
    [Google Scholar]
  15. Hiasa H., Marians K.J. 1994; Primase couples leading and lagging strand DNA synthesis from oric .. J Biol Chem 269:6058–6063
    [Google Scholar]
  16. Hiasa H., Tanaka K., Sakai H., Yoshida K., Honda Y., Komano T., Godson G.N. 1989; Distinct functional contributions of three potential secondary structures in the phage G4 origin of complementary DNA strand synthesis.. Gene 84:17–22
    [Google Scholar]
  17. Higashitani N., Higashitani A., Roth A., Horiuchi K. 1992; SOS induction in Escherichia coli by infection with mutant filamentous phage that are defective in initiation of complementary-strand DNA synthesis.. J Bacteriol 174:1612–1618
    [Google Scholar]
  18. Hiraga S., Niki H., Ogura T., Ichinose C., Mori H., Ezaki B., Jaffe E. 1989; Chromosome partitioning in Escherichia coli: novel mutants producing anucleate cells.. J Bacteriol 171:1496–1505
    [Google Scholar]
  19. Hirota Y., Mordoh J., Jacob F. 1970; On the process of cellular division in Escherichia coli. III. Thermosensitive mutants of E. coli altered in the process of DNA initiation.. J Mol Biol 53:369–387
    [Google Scholar]
  20. Ilyina T.V., Gorbalenya A.E., Koonin E.V. 1992; Organization and evolution of bacterial and bacteriophage primase-helicase systems.. J Mol Evol 34:351–357
    [Google Scholar]
  21. Katayama T., Murakami Y., Wada C., Ohmori H., Yura T., Nagata T. 1989; Genetic suppression of a dnaG mutation in Escherichia coli.. J Bacteriol 171:1465–1491
    [Google Scholar]
  22. Kogan S., Doherty M., Gitschier J. 1987; An improved method for prenatal diagnosis of genetic diseases by analysis of amplified DNA sequences.. N Engl J Med 317:985–990
    [Google Scholar]
  23. Kornberg A., Baker T.A. 1992 DNA Replication, 2nd edn.. New York: W. H. Freeman;
    [Google Scholar]
  24. Lark K. 1972; Genetic control over the initiation of the synthesis of the short deoxynucleotide chains in E. coli.. Nature New Biol 240:237–240
    [Google Scholar]
  25. Lupski J.R., Godson G.N. 1989; DNA-DNA, and DNA- RNA-protein: orchestration by a single complex operon.. BioEssays 10:152–157
    [Google Scholar]
  26. Magee T.R., Kogoma T. 1990; Requirement of RecBC enzyme and an elevated level of activated RecA for induced stable DNA replication in Escherichia coli.. J Bacteriol 172:1834–1839
    [Google Scholar]
  27. Magee T.R., Asai T., Malka D., Kogoma T. 1992; DNA damage-inducible origins of DNA replication in Escherichia coli.. EMBO J 11:4219–4225
    [Google Scholar]
  28. Marians K.J. 1992; Prokaryotic DNA replication.. Annu Rev Biochem 61:673–719
    [Google Scholar]
  29. Marinus M.G., Adelberg E.A. 1970; Vegetative replication and transfer replication of deoxyribonucleic acid in temperature-sensitive mutants of Escherichia coli K-12.. J Bacteriol 104:1266–1272
    [Google Scholar]
  30. Mendelman L.V., Notarnicola S.M., Richardson C.C. 1993; Evidence for distinct primase and helicase domains in the 63-kDa gene 4 protein of bacteriophage T7.. J Biol Chem 268:27208–27213
    [Google Scholar]
  31. Miller J.H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Mount D.W., Low K.B., Edmiston S.J. 1972; Dominant mutations (lex) in Escherichia coli which affect radiation sensitivity and frequency of ultraviolet light-induced mutations.. J Bacteriol 112:886–893
    [Google Scholar]
  33. Murakami Y., Nagata T., Schwarz W., Wada G, Yura T. 1985; Novel dnaG mutation in a dnaP mutant of Escherichia coli.. J Bacteriol 162:830–832
    [Google Scholar]
  34. Mustaev A.A., Godson G.N. 1995; Studies of the functional topography of the catalytic center of Escherichia coli primase.. J Biol Chem 270:15711–15718
    [Google Scholar]
  35. Nakamura Y. 1984; Amber dnaG mutation exerting a polar effect on the synthesis of RNA polymerase sigma factor in Escherichia coli.. Mol Gen Genet 196:179–182
    [Google Scholar]
  36. Nakayama N., Arai N., Kaziro Y., Arai K.-I. 1984; Structural and functional studies of the dnaB protein using limited proteolysis.. J Biol Chem 259:88–96
    [Google Scholar]
  37. Nordstrom K., Bernander R., Dasgupta S. 1991; The Escherichia coli cell cycle: one cycle or multiple independent processes that are co-ordinated ?. Mol Microbiol 5:769–774
    [Google Scholar]
  38. Norris V., Alliotte T., Jaffe A., D´Ari R. 1986; DNA replication termination in Escherichia coli parB (a dnaG allele), par A, and gyrB mutants affected in DNA distribution.. J Bacteriol 168:494–504
    [Google Scholar]
  39. Nurse P., Zavitz K.H., Marians K.J. 1991; Inactivation of the Escherichia coli PriA DNA replication protein induces the SOS response.. J Bacteriol 173:6686–6693
    [Google Scholar]
  40. Piatak M. Jr Luk K.-C. 1993; Quantitative competitive polymerase chain reaction for accurate quantitation of HIV DNA and RNA species.. Biotechniques 14:70–81
    [Google Scholar]
  41. Ray D. S., Schekmann R. W. 1969; Replication of bacteriophage M13. I. Sedimentation analysis of crude lysates of MIS-infected bacteria.. Biochim Biophys Acta 179:398–407
    [Google Scholar]
  42. Richardson R.W., Nossal N.G. 1989; Trypsin cleavage in the COOH terminus of the bacteriophage T4 gene 41 DNA helicase alters the primase-helicase activities of the T4 replication complex in vitro.. J Biol Chem 264:4732–4739
    [Google Scholar]
  43. Roa B.B., Garcia C.A., Suter U., Kulpa D., Wise C.A., Mueller J., Welcher A.A., Snipes G.J., Shooter E.M., Patel P.I., Lupski I. R. 1993; Charcot-Marie-Tooth disease type IA: association with a spontaneous point mutation in the PMP22 gene.. N Engl J Med 329:96–101
    [Google Scholar]
  44. Rowen L., Kornberg A. 1978; A ribo-deoxynucleotide primer synthesized by primase.. J Biol Chem 253:770–774
    [Google Scholar]
  45. Sakai H., Godson G.N. 1985; Isolation and construction of mutants of the G4 minus strand origin: analysis of their in vivo activity.. Biochim Biophys Acta 826:30–37
    [Google Scholar]
  46. Schmid M.B. 1990; A locus affecting nucleoid segregation in Salmonella typhimurium.. J Bacteriol 172:5416–5424
    [Google Scholar]
  47. Setlow P., Kornberg A. 1972; Deoxyribonucleic acid polymerase: two distinct enzymes in one polypeptide.. J Biol Chem 247:232–240
    [Google Scholar]
  48. Shrimankar P., Stordal L., Maurer R. 1992; Purification and characterization of a mutant DnaB protein specifically defective in ATP hydrolysis.. J Bacteriol 174:7689–7696
    [Google Scholar]
  49. Silver S., Wendt L. 1967; Mechanism of action of phenethyl alcohol: breakdown of the cellular permeability barrier.. J Bacteriol 93:560–566
    [Google Scholar]
  50. Sun W., Tormo J., Steitz T.A., Godson G.N. 1994; Domains of Escherichia coli primase: functional activity of a 47-kDa N-terminal proteolytic fragment.. Proc Natl Acad Sci USA 9111462–11466
    [Google Scholar]
  51. Tougu K., Peng H., Marians K.J. 1994; Identification of a domain of Escherichia coli primase required for functional interaction with the DnaB helicase at the replication fork.. J Biol Chem 269:4675–4682
    [Google Scholar]
  52. Versalovic J., Lupski J.R. 1993; The Haemophilus influenzae dnaG sequence and conserved bacterial primase motifs.. Gene 136:281–286
    [Google Scholar]
  53. Wada C., Yura T. 1974; Phenethyl alcohol resistance in Escherichia coli. III. A temperature-sensitive mutation (dnaP) affecting DNA replication.. Genetics 77:199–220
    [Google Scholar]
  54. Wechsler J.A., Gross J.D. 1971; Escherichia coli mutants temperature-sensitive for DNA synthesis.. Mol Gen Genet 113:273–284
    [Google Scholar]
  55. Weinstock G.M. 1991; Transduction in Gram-negative bacteria.. In Modern Microbial Genetics pp. 253–270 Edited by Streips U. N., Yasbin R. E. New York: Wiley-Liss;
    [Google Scholar]
  56. Wu C.A., Zechner E.L., Reems J.A., McHenry C.S., Marians K.J. 1992; Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork.. J Biol Chem 267:4074–4083
    [Google Scholar]
  57. Zinder N.D., Boeke J.D. 1982; The filamentous phage (Ff) as vectors for recombinant DNA - a review.. Gene 19:1–10
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-2-585
Loading
/content/journal/micro/10.1099/00221287-143-2-585
Loading

Data & Media loading...

Most cited Most Cited RSS feed