1887

Abstract

The locus was defined by mutations that render sporulation alkaline phosphatase formation independent of s and s without affecting the temporal control of formation. The locus has been cloned and sequenced. The deduced polypeptide is 232 amino acids long, with a molecular mass of 26 kDa. It is very similar to four sequences in the database, none of which has a known function. Analysis of the transcription of indicates that it is induced during late exponential phase, and that maximum expression is reached during the first hour of stationary phase, both under sporulation and non-sporulation conditions. The defining mutations of the locus, and have been sequenced and found to contain the same change, a G → A transition resulting in an Ala Thr switch. This mutation apparently results in a gain-of-function, as null mutants are indistinguishable from strains in terms of their APase production during sporulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-2-577
1997-02-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/2/mic-143-2-577.html?itemId=/content/journal/micro/10.1099/00221287-143-2-577&mimeType=html&fmt=ahah

References

  1. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990; Basic local alignment search tool.. J Mol Biol 215:403–410
    [Google Scholar]
  2. Birkey S.M., Sun G., Piggot P.J., Hulett F.M. 1994; A pho regulon promoter induced under sporulation conditions.. Gene 147:95–100
    [Google Scholar]
  3. Bookstein C., Edwards C.E., Kapp N.V., Hulett F.M. 1990; The Bacillus subtilis alkaline phosphatase III gene: impact of a phoAIH mutation on total alkaline phosphatase synthesis.. J Bacteriol 172:3730–3737
    [Google Scholar]
  4. Boylan S.A., Redfield A.R., Brody M.S., Price C.W. 1993; Stress-induced activation of the σB transcription factor of Bacillus subtilis. . J Bacteriol 175:7931–7937
    [Google Scholar]
  5. Brendel V., Hamm G.H., Trifonov E.N. 1984; Terminators of transcription with RNA polymerase from Escherichia coli: what they look like and how to find them.. J Biomol Struct Dyn 3:705–723
    [Google Scholar]
  6. Camilli A., Portnoy D.A., Youngman P. 1990; Insertion mutagenesis of Listeria monocytogenes with a novel Tn917 derivative that allows direct cloning of DNA flanking transposon insertions.. J Bacteriol 172:3738–3744
    [Google Scholar]
  7. Chesnut R.S., Bookstein C., Hulett F.M. 1991; Separate promoters direct expression of phoAHI, a member of the Bacillus subtilis multigene family, during phosphate starvation and sporulation.. Mol Microbiol 5:2181–2190
    [Google Scholar]
  8. Csonka L.N. 1989; Physiological and genetic responses of bacteria to osmotic stress.. Microbiol Rev 53:121–147
    [Google Scholar]
  9. Dedonder R.A., Lepesant J.-A., Lepesant-Kejzlarova A., Billault A., Steinmetz M., Kunst F. 1977; Construction of reference strains for rapid genetic mapping in Bacillus subtilis 168.. Appl Environ Microbiol 33:989–993
    [Google Scholar]
  10. Errington J. 1993; Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis.. Microbiol Rev 57:1–33
    [Google Scholar]
  11. Fleischmann R.D., Adams M.D., White O. 37 other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd.. Science 269:496–512
    [Google Scholar]
  12. Glenn A.R., Mandelstam J. 1971; Sporulation in Bacillus subtilis 168. Comparison of alkaline phosphatase from sporu- lating and vegetative cells.. Biochem J 123:129–138
    [Google Scholar]
  13. Grant W.D. 1974; Sporulation in Bacillus subtilis 168. Control of synthesis of alkaline phosphatase.. J Gen Microbiol 82:363–369
    [Google Scholar]
  14. Hanahan D. 1985; Techniques for transformation of Escherichia coli. . In DNA Cloning II: a Practical Approach pp. 109–135 Glover D.M. Edited by Washington, DC: IRL Press;
    [Google Scholar]
  15. Hoch J.A. 1991; Genetic analysis in Bacillus subtilis. . Methods Enzymol 204:305–320
    [Google Scholar]
  16. Hulett F.M. 1996; The signal transduction network for PHO regulation in Bacillus subtilis. . Mol Microbiol 19:933–939
    [Google Scholar]
  17. Hulett F.M., Lee J.-W., Shi L., Sun G.-F., Chesnut R., Sharkova E., Duggan M.F., Kapp N. 1994; Sequential action of two- component genetic switches regulates the PHO regulon in Bacillus subtilis. . J Bacteriol 176:1348–1358
    [Google Scholar]
  18. Itaya M., Kondo K., Tanaka T. 1989; A neomycin resistance gene cassette selectable in a single copy in the Bacillus subtilis chromosome.. Nucleic Acids Res 17:4410
    [Google Scholar]
  19. Karlin S., Altschul S.F. 1990; Methods of assessing the statistical significance of molecular sequence features by using general scoring schemes.. Proc Natl Acad Sci USA 872264–2268
    [Google Scholar]
  20. Losick R., Stragier P. 1992; Crisscross regulation of cell-type- specific gene expression during development in B. subtilis. . Nature 355:601–604
    [Google Scholar]
  21. Maloy S.R. 1987; The proline utilization operon.. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Neidhardt F.C., Ingraham J.L., Brooks Low K., Magasanik B., Schaechter M., Umbarger H.E. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Miller J.H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Mizuno T., Tanaka T. 1993; Function of the E. coli nucleoid protein H-NS: molecular analysis of a subset of proteins whose expression is enhanced in a H-NS deletion strain.. Mol Gen Genet 237:113–122
    [Google Scholar]
  24. Nicholson M.L., Laudenbach D.E. 1995; Genes encoded on a cyanobacterial plasmid are transcriptionally regulated by sulfur availability and CysR.. J Bacteriol 177:2143–2150
    [Google Scholar]
  25. Nicholson W.L. 1990; Sporulation, germination and outgrowth.. In Molecular Biological Methods for Bacillus pp. 391–429 Harwood C.R., Cutting S.M. Edited by Chichester: Wiley;
    [Google Scholar]
  26. Piggot P.J., Coote J.G. 1976; Genetic aspects of bacterial endospore formation.. Bacteriol Rev 40:908–962
    [Google Scholar]
  27. Piggot P.J., Curtis C.A.M. 1987; Analysis of regulation of gene expression during Bacillus subtilis sporulation by ma-nipulation of the copy number of spo-lacZ fusions.. J Bacteriol 169:1260–1266
    [Google Scholar]
  28. Piggot P.J., Taylor S.Y. 1977; New types of mutation affecting formation of alkaline phosphatase by Bacillus subtilis in sporulation conditions.. J Gen Microbiol 102:69–80
    [Google Scholar]
  29. Piggot P.J., Curtis C.A.M., de Lencastre H. 1984; Use of integrational plasmid vectors to demonstrate the polycistronic nature of a transcriptional unit (spoIIA) required for sporulation of Bacillus subtilis. . J Gen Microbiol 130:2123–2136
    [Google Scholar]
  30. Rost B., Sander C., Schneider R. 1994; PHD: a mail server for protein secondary structure prediction.. CABIOS 10:53–60
    [Google Scholar]
  31. Ryter A. 1965; Etude morphologique de la sporulation de Bacillus subtilis. . Ann Inst Pasteur 108:40–60
    [Google Scholar]
  32. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A.L. 1977; DNA sequencing with chain-terminating inhibitors.. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  34. Seki T., Yoshikawa H., Takahashi H., Saito H. 1987; Cloning and nucleotide sequence of phoP the regulatory gene for alkaline phosphatase and phosphodiesterase in Bacillus subtilis. . J Bacteriol 169:2913–2916
    [Google Scholar]
  35. Seki T., Yoshikawa H., Takahashi H., Saito H. 1988; Nucleotide sequence of the Bacillus subtilis phoR gene.. J Bacteriol 170:5935–5938
    [Google Scholar]
  36. Shimotsu H., Henner D.J. 1986; Construction of a single copy integration vector and its use in analysis of regulation of the trp operon of Bacillus subtilis. . Gene 43:85–94
    [Google Scholar]
  37. Snavely M.D., Miller C.G., Maguire M.E. 1991; The mgtB Mg2+ transport locus of Salmonella typhimurium encodes a P- type ATPase.. J Biol Chem 266:815–823
    [Google Scholar]
  38. Sterlini J.M., Mandelstam J. 1969; Commitment to sporulation in Bacillus subtilis and its relationship to actinomycin resistance.. Biochem J 113:29–37
    [Google Scholar]
  39. Stragier P., Bouvier J., Bonamy C., Szulmajster J. 1984; A developmental gene product of Bacillus subtilis homologous to the sigma factor of Escherichia coli. . Nature 312:376–378
    [Google Scholar]
  40. Sun G., Birkey S.M., Hulett F.M. 1996; Three two- component signal transduction systems interact for PHO regulation in Bacillus subtilis. . Mol Microbiol 19:941–948
    [Google Scholar]
  41. Tanaka T., Kawata M. 1988; Cloning and characterization of Bacillus subtilis iep, which has positive and negative effects on production of extracellular proteases.. J Bacteriol 170:3593–3600
    [Google Scholar]
  42. Tao T., Snavely M.D., Farr S.G., Maguire M.E. 1995; Magnesium transport in Salmonella typhimurium: mgtA encodes a P-type ATPase and is regulated by Mg2+ in a manner similar to that of the mgtB P-type ATPase.. J Bacteriol 177:2654–2662
    [Google Scholar]
  43. Tomich P.K., An F.Y., Clewell D.B. 1980; Properties of the erythromycin-inducible transposon Tn917 in Streptococcus faecalis. . J Bacteriol 141:1366–1374
    [Google Scholar]
  44. Wanner B.L. 1992; Is cross regulation by phosphorylation of two-component response regulator proteins important in bacteria? . J Bacteriol 174:2053–2058
    [Google Scholar]
  45. Young F.E., Wilson G.A. 1974 Bacillus subtilis. In Handbook of Genetics 1 pp. 69–114 King R.C. Edited by New York: Plenum Press;
    [Google Scholar]
  46. Youngman P. 1985; Plasmid vectors for recovering and exploiting Tn917 transpositions in Bacillus and other gram-positive bacteria.. In Plasmids: a Practical Approach pp. 585–596 Hardy K. Edited by Oxford: IRL Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-2-577
Loading
/content/journal/micro/10.1099/00221287-143-2-577
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error