1887

Abstract

A number of clones were isolated from a subsp. lactis gene library capable of hydrolysing the chromogenic substrate Gly-Ala-β-naphthylamide (Gly-Ala-βNA). Some of the recombinant plasmids carried by these clones have been shown to encode the cysteine aminopeptidase gene Nucleotide sequence analyses of the plasmid inserts of the remaining clones resulted in the identification of two adjacent ORFs encoding proteins exhibiting a high degree of similarity between themselves (72.6%) and with One gene, designated was overexpressed in and the crude extracts obtained were shown to be peptidolytically active both against chromogenic substrates and peptides, and in a growth test. PepC and PepG activities were compared using chromogenic βNA and p-nitroanilide substrates and leucine or proline-containing peptides were applied in growth experiments of recombinant The results indicate that the enzymes, although structurally related, have different substrate preferences. No enzyme activity could be ascribed to the second ORF (), despite the production of a visible protein using a T7 RNA polymerase system. Primer extension analysis, using mRNA isolated from subsp. DSM7290 did establish that was transcribed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-2-527
1997-02-01
2021-09-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/2/mic-143-2-527.html?itemId=/content/journal/micro/10.1099/00221287-143-2-527&mimeType=html&fmt=ahah

References

  1. Carter T., Miller C.G. 1984; Aspartate specific peptidases in Salmonella typhimurium: mutants deficient in peptidase E.. J Bacteriol 159:453–459
    [Google Scholar]
  2. Chapot-Chartier M.P., Nardi M., Chopin M.C., Chopin A., Gripon J.C. 1993; Cloning of pepC, a cysteine aminopeptidase from Lactococcus lactis subsp.cremoris AM2.. Appl Environ Microbiol 59:330–333
    [Google Scholar]
  3. Chapot-Chartier M.P., Rul F., Nardi M., Gripon J.C. 1994; Gene cloning and characterization of PepC, a cysteine aminopeptidase from Streptococcus thermophilus, with sequence similarity to the eucaryotic bleomycin hydrolase.. Eur J Biochem 224:497–506
    [Google Scholar]
  4. Christensen J.E., Lin V., Palva V., Steele J.L. 1995; Sequence analysis, distribution and expression of an aminopeptidase N- encoding gene from Lactobacillus helveticus CNRZ32.. Gene 164:189–190
    [Google Scholar]
  5. De Man J.C., Rogosa M., Sharpe M.E. 1960; A medium for the cultivation of Lactobacilli.. J Appl Bacteriol 23:130–135
    [Google Scholar]
  6. Dower W.J., Miller J.F., Ragsdale C.W. 1988; High efficiency transformation of E. coli by high voltage electroporation.. Nucleic Acids Res 16:2127–2145
    [Google Scholar]
  7. Dudley E.G., Husgen A.C., He W., Steele J.L. 1996; Sequencing, distribution, and inactivation of the dipeptidase A gene (pepDA) from Lactobacillus helveticus CNRZ32.. J Bacteriol 178:701–704
    [Google Scholar]
  8. Fernández L., Bhowmik T., Steele J.L. 1994; Characterization of the Lactobacillus helveticus CNRZ32 pepC gene.. Appl Environ Microbiol 60:333–336
    [Google Scholar]
  9. Gilbert C., Atlan D., Blanc B., Portalier R., Germond J.E.G., Lapierre L., Mollet B. 1996; A new cell surface proteinase: sequencing and analysis of the prtB gene from Lactobacillus delbrueckii subsp.bulgaricus. . J Bacteriol 178:3059–3065
    [Google Scholar]
  10. Kamphuis I.G., Drenth J., Baker E.N. 1985; Thiol proteases. Comparative studies based on the high-resolution structures of papain and actinidin, and on amino acid sequence information for cathepsins B and H, and stem bromelain.. J Mol Biol 182:317–329
    [Google Scholar]
  11. Klein J.R., Klein U., Schad M., Plapp R. 1993; Cloning, DNA sequence analysis and partial characterization of pepN, a lysyl aminopeptidase from Lactobacillus delbrueckii subsp.lactis DSM7290.. Eur J Biochem 217:105–114
    [Google Scholar]
  12. Klein J.R., Henrich B., Plapp R. 1994; Cloning and nucleotide sequence analysis of the Lactobacillus delbrueckii subsp.lactis DSM7290 cysteine aminopeptidase gene pepC. . FEMS Microbiol Lett 124:291–300
    [Google Scholar]
  13. Klein J.R., Ulrich G, Wegmann U., Meyer-Barton E., Plapp R., Henrich B. 1996; Molecular tools for the genetic modification of dairy lactobacilli.. System Appl Microbiol 18:493–503
    [Google Scholar]
  14. Kok J., De Vos W. 1994; The proteolytic system of lactic acid bacteria.. In Genetics and Biotechnology of Lactic Acid Bacteria pp. 169–210 Edited by Gasson M. J., De Vos W. M. Glasgow: Blackie;
    [Google Scholar]
  15. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4.. Nature 227:680–685
    [Google Scholar]
  16. Magdolen U., Mueller G., Magdolen V., Bandlow W. 1993; A yeast gene (BLH1) encodes a polypeptide with high homology to vertebrate bleomycin hydrolase, a family member of thiol proteases.. Biochim Biophys Acta 1171:299–303
    [Google Scholar]
  17. Matern H.T., Klein J.R., Henrich B., Plapp R. 1994; Determination and comparison of Lactobacillus delbrueckii subsp.lactis DSM7290 promoter sequences.. FEMS Microbiol Lett 122:121–128
    [Google Scholar]
  18. Miller G, Schwartz G. 1978; Peptidase deficient mutants of Escherichia coli. . J Bacteriol 135:603–611
    [Google Scholar]
  19. O’Callaghan D., Charbit A. 1990; High efficiency transformation of Salmonella typhimurium and Salmonella typhi by electroporation.. Mol Gen Genet 223:156–158
    [Google Scholar]
  20. Pearson W.R., Lipman D.J. 1988; Improved tools for biological sequence comparison.. Proc Natl Acad Sci USA 852444–2488
    [Google Scholar]
  21. Poolman B., Kunji E.R.S., Hagting A., Juillard V., Konings W.L. 1995; The proteolytic pathway of Lactococcus lactis. . J Appl Bacteriol Symp Suppl 79:65S–75S
    [Google Scholar]
  22. Pritchard G.G., Coolbear T. 1993; The physiology and biochemistry of the proteolytic system in lactic acid bacteria.. FEMS Microbiol Rev 12:179–206
    [Google Scholar]
  23. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors.. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  25. Sankar P., Hutton M.E., VanBogelen R.A., Clark R.L., Neidhardt F.C. 1993; Expression analysis of cloned chromosomal segments of Escherichia coli. . J Bacteriol 175:5145–5152 (author’s correctionJ Bacterioll 176,939)
    [Google Scholar]
  26. Shine J., Dalgarno L. 1974; The 3/-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites.. Proc Natl Acad Sci USA 711342–1346
    [Google Scholar]
  27. Stoker N.G., Fairweather N.F., Spratt B.G. 1982; Versatile low copy number plasmid vectors for cloning in Escherichia coli. . Gene 18:335–341
    [Google Scholar]
  28. Stucky K., Hagting A., Klein J.R., Matern H., Henrich B., Konings W.N., Plapp R. 1995a; Cloning and characterization of brnQ, a low affinity branched chain amino acid carrier gene from Lactobacillus delbriickii subsp.lactis DSM7290.. Mol Gen Genet 249:682–690
    [Google Scholar]
  29. Stucky K., Klein J.R., Schüller A., Matern H., Henrich B., Plapp R. 1995b; Cloning and DNA sequence analysis of pepQ, a prolidase gene from Lactobacillus delbrueckii subsp.lactis DSM7290 and partial characterization of its product.. Mol Gen Genet 247:494–500
    [Google Scholar]
  30. Vesanto E., Varmanen P., Steele J.L., Palva A. 1994; Characterization and expression of the Lactobacillus helveticus pepC gene encoding a general aminopeptidase.. Eur J Biochem 224:991–997
    [Google Scholar]
  31. Vesanto E., Savijoki K., Rantanen T., Steele J.L., Palva A. 1995; An X-Prolyl dipeptidyl aminopeptidase (pepX) gene from Lactobacillus helveticus. . Microbiology 141:3067–3075
    [Google Scholar]
  32. Wang R.F., Kushner S.R. 1991; Construction of versatile low- copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. . Gene 100:195–199
    [Google Scholar]
  33. Weber K., Osborn M. 1969; The reliability of molecular weight determinations by dodecyl sulphate-polyacrylamide gel electrophoresis.. J Biol Chem 244:4406–4412.HI
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-2-527
Loading
/content/journal/micro/10.1099/00221287-143-2-527
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error