1887

Abstract

Previous investigations have reported that space flight may produce a stimulating effect on microbial metabolism; however, the specific underlying mechanisms associated with the observed changes have not yet been identified. In an effort to systematically evaluate the effect of space flight on each phase of microbial growth (lag, exponential and stationary), a series of experiments was carried out using suspension cultures of aboard seven US Space Shuttle missions. The results indicated that, as a result of space flight, the lag phase was shortened, the duration of exponential growth was increased, and the final cell population density was approximately doubled. A model was derived from these cumulative data in an attempt to associate gravity-dependent, extracellular transport phenomena with unique changes observed in each specific phase of growth. It is suggested that a cumulative effect of gravity may have a significant impact on suspended cells via their fluid environment, where an immediate, direct influence of gravity might otherwise be deemed negligible.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-2-449
1997-02-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/2/mic-143-2-449.html?itemId=/content/journal/micro/10.1099/00221287-143-2-449&mimeType=html&fmt=ahah

References

  1. Albrecht-Buehler G. 1991; Possible mechanisms of indirect gravity sensing by cells.. Am Soc Grav Space Biol Bull 4:25–34
    [Google Scholar]
  2. Alpatov A.M, ll’in Y.A., Antipov V.V., Tairbekov M.G. 1990; Space biology and medicine biological experiments on COSMOS-18 87.. In USSR Space Life Sciences Digest NASA Contractor Report [NASA publication 3922(31)] pp. 74–77 Stone L. R., Frey M. A., Teeter R., Garshnek V., Rowe J. Edited by Washington, DC:: NASA;
    [Google Scholar]
  3. Bailey J.E., Ollis D.F. 1986 Biochemical Engineering Fundamentals, 2nd. New York:: McGraw-Hill;
    [Google Scholar]
  4. Barford J. P., Pamment N. B., Hall R. J. 1982; Lag phases and transients.. In Microbial Population Dynamics pp. 56–87 Bazin M. J. Edited by Boca Raton, FL:: CRC.;
    [Google Scholar]
  5. Berg H.C., Turner L. 1990; Chemotaxis of bacteria in glass capillary arrays.. Biophys J 58:919–930
    [Google Scholar]
  6. Bouloc P., D’Ari R. 1991; Escherichia coli metabolism in space.. J Gen Microbiol 137:2839–2843
    [Google Scholar]
  7. Ciferri O., Tiboni O., DiPasquale G., Orlandoni A.M., Marchesi M.L. 1986; Effects of microgravity on genetic recombination in Escherichia coli. . Naturwissenschaften 73:418–421
    [Google Scholar]
  8. Cioletti L.A., Pierson D.L., Mishra S.K. 1991; Microbial growth and physiology in space: a review.. Society of Automotive Engineers International Technical Paper 9115121–11 Warren- dale, PA:: SAE Publications.;
    [Google Scholar]
  9. Gasset G., Tixador R., Eche B., Lapchine L., Moatti N., Toorop P., Woldringh C. 1994; Growth and division of Escherichia coli under microgravity conditions.. Res Microbiol 145:112–120
    [Google Scholar]
  10. Gmünder F.K., Cogoli A. 1988; Cultivation of single cells in space.. Appl Microgravity Technol I3:115–122
    [Google Scholar]
  11. Grant M.L., Saville D.A. 1991; The role of transport phenomena in protein crystal growth.. J Cryst Growth 108:8–18
    [Google Scholar]
  12. Holemans J., Cassanto J.M., Moller T.W., Cassanto V.A., Rose A., Luttges M., Morrison D., Todd P., Stewart R., Korszun R.Z., Deardorff G. 1991; The BIMDA shuttle flight mission: a low cost microgravity payload.. Microgravity Q 1:235–247
    [Google Scholar]
  13. Klaus D.M. 1994 Effects of space flight on the growth and development of Escherichia coli. PhD thesis: University of Colorado.;
    [Google Scholar]
  14. Klaus D. M., Luttges M. W., Stodieck L. S. 1994; Investigation of space flight effects on Escherichia coli growth.. Society of Automotive Engineers International Technical Paper Series SAE 941260. Warrendale, PA:: SAE Publications.;
    [Google Scholar]
  15. Lapchine L., Moatti N., Richoilley G., Templier J., Gasset G. 1987; Antibiotic activity in space, results and hypothesis.. Proceedings of the 3rd European Symposium on Life Sciences Research in Space (European Space Agency publication SP-271) pp. 305–306 Paris:: European Space Agency.;
    [Google Scholar]
  16. Lapchine L., Moatti N., Richoilley G., Templier J., Gasset G., Tixador R. 1988; The antibio experiment.. In Biorack on Spacelab D1 (European Space Agency publication SP-1091) pp. 45–51 Paris:: European Space Agency.;
    [Google Scholar]
  17. Luttges M.W. 1992; Recognizing and optimizing flight opportunities with hardware and life sciences limitations.. Trans Kansas Acad Sci 95:76–86
    [Google Scholar]
  18. McPherson A. 1993; Effects of a microgravity environment on the crystallization of biological macromolecules.. Microgravity Sci Technol 1/2:101–109
    [Google Scholar]
  19. Manko V.G., Kordyum V.A., Vorob’yev L.V., Konshin N.I., Nechitaylo G.S. 1987; Changes over time in Proteus vulgaris cultures grown in the ROST-4M2 device on the ‘Salyut-7’ space station.. In USSR Space Life Sciences Digest NASA Contractor Report [NASA publication 3922(14)] pp. 70–73 Hooke L. R., Radtke M., Teeter R. Edited by Washington, DC:: NASA.;
    [Google Scholar]
  20. Mattoni R. H. T. 1968; Space-flight effects and gamma radiation interaction on growth and induction of lysogenic bacteria.. BioScience 18:602–608
    [Google Scholar]
  21. Mennigmann H.D., Heise M. 1994; Response of growing bacteria to reduction in gravity.. Proceedings of the 5th European Symposium of Life Sciences Research in Space, (European Space Agency publication SP-366) pp. 83–87 Paris:: European Space Agency.;
    [Google Scholar]
  22. Mennigmann H.D., Lange M. 1986; Growth and differentiation of Bacillus subtilus under microgravity.. Naturwissenschaften 73:415–417
    [Google Scholar]
  23. Moatti N., Lapchine L., Gasset G., Richoilley G., Templier J., Tixador R. 1986; Preliminary results of the ‘antibio’ experiment.. Naturwissen schaften 73:413–414
    [Google Scholar]
  24. Nanninga N. 1985; Molecular cytology of Escherichia coli. . Orlando FL:: Academic Press.;
    [Google Scholar]
  25. Planel H., Tixador R., Nefedov Y., Gretchko G., Richoilley G. 1982; Effects of space flight factors at the cellular level: results of the cytos experiment.. Aviat Space Environ Med 53:370–374
    [Google Scholar]
  26. Robinson M.C., Luttges M.W., Stodieck L.S. 1993; Commercial generic bioprocessing apparatus.. American Institute for Aeronautics and Astronautics Space Programs and Technologies Conference. AIAA 93-4314. Washington, DC:: AIAA.;
    [Google Scholar]
  27. Taylor G. R. 1974; Space microbiology.. Annu Rev Microbiol 28:121–137
    [Google Scholar]
  28. Taylor G.R. 1977; Cell biology experiments conducted in space.. BioScience 27:102–108
    [Google Scholar]
  29. Tixador R., Richoilley G., Raffin J., Bost R., Kojarinov V., Lepskye A. 1981; The Cytos biological experiments carried out on the soviet orbital station Salyut 6.. Aviat Space Environ Med 52:485–487
    [Google Scholar]
  30. Tixador R., Richoilley G., Gasset G., Templier J., Bes J.C., Lapchine L. 1985; Study of minimal inhibitory concentration of antibiotics on bacteria cultivated in vitro in space (Cytos 2 experiment).. Aviat Space Environ Med 56:748–751
    [Google Scholar]
  31. Tixador R., Gasset G., Eche B., Moatti N., Lapchine L., Woldringh G, Moatti J.P., Delmotte F., Tap G. 1994; Behavior of bacteria and antibiotics under space conditions.. Aviat Space Environ Med 65:551–556
    [Google Scholar]
  32. Todd P. 1989; Gravity-dependent phenomena at the scale of the single cell.. Am Soc Grav Space Biol Bull 2:95–113
    [Google Scholar]
  33. Todd P. 1992; Gravity and the mammalian cell.. Physical Forces and the Mammalian Cell pp. 347–381 Frangos J., Ives C. Edited by New York:: Academic Press.;
    [Google Scholar]
  34. Vogel H.J., Bonner D.M. 1956; Acetylornithinase of Escherichia coli: partial purification and some properties.. J Biol Chem 218:97–106
    [Google Scholar]
  35. Volkmann D., Behrens H.M. 1986; Flight hardware for chemical fixation of living material in the microgravity environment.. Naturwissenschaften 73:435–437
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-2-449
Loading
/content/journal/micro/10.1099/00221287-143-2-449
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error