1887
Preview this article:
Zoom in
Zoomout

Gene regulation during high-frequency switching in , Page 1 of 1

| /docserver/preview/fulltext/micro/143/2/mic-143-2-279-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-2-279
1997-02-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/2/mic-143-2-279.html?itemId=/content/journal/micro/10.1099/00221287-143-2-279&mimeType=html&fmt=ahah

References

  1. Anderson J.M., Soll D.R. 1987; Unique phenotype of opaque cells in the white-opaque transition of Candida albicans.. J Bacteriol 169:5579–5588
    [Google Scholar]
  2. Anderson J.M., Cundiff L, Schnars B., Gao M., Mackenzie I., Soll D.R. 1989; Hypha formation in the white-opaque transition of Candida albicans.. Infect Immun 57:458–467
    [Google Scholar]
  3. Anderson J.M., Mihalik K., Soll D.R. 1990; Ultrastructure and antigenicity of the unique cell and pimple of the Candida opaque phenotype.. J Bacteriol 172:224–235
    [Google Scholar]
  4. Aparicho O.M., Billington B.C., Gottschling D.E. 1991; Modifiers of position effects are shared between telomeric and silent mating-type loci in S. cerevisiae.. Cell 66:1279–1287
    [Google Scholar]
  5. Au-Young J., Robbins P.W. 1990; Isolation of a chitin synthase gene (CHS1) from Candida albicans by expression in Saccharomyces cerevisiae.. Mol Microbiol 4:197–207
    [Google Scholar]
  6. Barbour A. 1989; Antigenic variation in relapsing fever Borrelia species: genetic aspects.. In Mobile DNA pp. 783–790 Edited by Berg D.E., Howe M.M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Bergen M.S., Voss E., Soll D.R. 1990; Switching at the cellular level in the white-opaque transition of Candida albicans.. J Gen Microbiol 136:1925–1936
    [Google Scholar]
  8. Birse C.E., Irwin M.Y., Fonzi W.A., Sypherd P.S. 1993; Cloning and characterization of ECE1, a gene expressed in association with cell elongation of the dimorphic pathogen Candida albicans.. Infect Immun 61:3648–3655
    [Google Scholar]
  9. Brown-Thomsen J. 1968; Variability in Candida albicans (Robin) Berkhous.. Hereditas 60:335–398
    [Google Scholar]
  10. Cavallini B., Huet J., Plassat J.L., Sentenac A., Egly J.M., Chambom P. 1988; A yeast activity can substitute for the Hela cell TATA box factor.. Nature 334:77–80
    [Google Scholar]
  11. Chodosh L.A., Olesen J., Hahn S., Baldwin A.S., Guarente L., Sharp P.A. 1988; A yeast and a human CCAAT-binding protein have heterologous subunits that are functionally interchangeable.. Cell 53:25–35
    [Google Scholar]
  12. Chu W.-S., Rikkerink E.H.A., Magee P.T. 1992; Genetics of the white-opaque transition in Candida albicans: demonstration of switching recessivity and mapping of switching genes.. J Bacteriol 174:2951–2957
    [Google Scholar]
  13. Donelson J.E. 1989; DNA rearrangements and antigenic variation in African trypanosomes.. In Mobile DNA pp. 763–782 Edited by Berg D.E., Howe M.M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Gallagher P.J., Bennett D.E., Henman M.C., Russell R.J., Flint S.R., Shanley D.B., Coleman D.C. 1992; Reduced azole susceptibility of oral isolates of Candida albicans from HIV-positive patients and a derivative exhibiting colony morphology variation.. J Gen Microbiol 138:1901–1911
    [Google Scholar]
  15. Ghannoum M.A., Swairjo I., Soll D.R. 1990; Variation in lipid and sterol contents in Candida albicans white and opaque phenotypes.. J Med Vet Mycol 28:103–117
    [Google Scholar]
  16. Gil C., Pomés R., Nombela C. 1988; A complementation analysis by parasexual recombination of Candida albicans morphological mutants.. J Gen Microbiol 134:1587–1595
    [Google Scholar]
  17. Glasgow A.C., Hughes K.T., Simon M.I. 1989; Bacterial DNA inversion systems.. In Mobile DNA pp. 637–660 Edited by Berg D.E., Howe M.M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Goshorn A.K., Scherer S. 1989; Genetic analysis of prototropic natural variants of Candida albicans.. Genetics 123:667–673
    [Google Scholar]
  19. Gow N.A.R., Robbins P.W., Lester J.W., Brown A.J.P., Fonzi W.A., Chapman T., Kinsman O.K. 1994; A hyphal-specific chitin synthase gene (CHS2) is not essential for growth, dimorphism or virulence of Candida albicans.. Proc Natl Acad Sci USA 916216–6220
    [Google Scholar]
  20. Gow N.A.R., Hube B., Bailey D.A., Schofield D.A., Munro C., Swoboda R.K., Bertram G., Westwater C., Broadbent I., Smith R.J., Gooday G.W., Brown A.J.P. 1995; Genes associated with dimorphism and virulence of Candida albicans.. Can J Bot 73: (Suppl. 1) S335–S342
    [Google Scholar]
  21. Hellstein J., Vawter-Hugart H., Fotos P., Schmid J., soll D.R. 1993; Genetic similarity and phenotypic diversity of commensal and pathogenic strains of Candida albicans isolated from the oral cavity.. J Clin Microbiol 31:3190–3199
    [Google Scholar]
  22. Hube B., Turner C.J., Odds F.C., Eiffert H., Boulnois G.J., Kochel H., Ruschel R. 1991; Sequence of the Candida albicans gene encoding the secretory aspartate proteinase.. J Med Vet Mycol 29:129–132
    [Google Scholar]
  23. Hube B., Monod M., Schofield D.A., Brown A.J.P., Gow N.A.R. 1994; Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans.. Mol Microbiol 14:87–99
    [Google Scholar]
  24. Iwaguchi S.-l., Homma M., Tanaka K. 1992; Clonal variation of chromosome size derived from the rDNA cluster region in Candida albicans.. J Gen Microbiol 138:1177–1184
    [Google Scholar]
  25. Jones S., White G., Hunter P.R. 1994; Increased phenotypic switching in strains of Candida albicans associated with invasive infections.. J Clin Microbiol 32:2869–2870
    [Google Scholar]
  26. Kennedy M.J., Rogers A.L., Hanselman L.R., soll D.R., Yancey R.J. 1988; Variation in adhesion and cell surface hydrophobicity in Candida albicans white and opaque phenotypes.. Mycopathologia 102:149–156
    [Google Scholar]
  27. Kolotila M.P., Diamond R.D. 1990; Effects of neutrophils and in vitro oxidants on survival and phenotypic switching of Candida albicans WO-1.. Infect Immun 58:1174–1179
    [Google Scholar]
  28. Liu H., Kohler J., Fink G.R. 1994; Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog.. Science 266:1723–1726
    [Google Scholar]
  29. Lorenz W.W., McCann R.O., Longiaru M., Cormier M.J. 1991; Isolation and expression of a cDNA encoding Renilla reniformis luciferase.. Proc Natl Acad Sci USA 884438–4442
    [Google Scholar]
  30. Mackinnon J.E. 1940; Dissociation in Candida albicans.. J Infect Dis 66/67:59–77
    [Google Scholar]
  31. Merz W.G., Connelly C., Hieter P. 1988; Variation of electrophoretic karyotypes among clinical isolates of Candida albicans.. J Clin Microbiol 26:842–845
    [Google Scholar]
  32. Morrow B., Srikantha T., soll D.R. 1992; Transcription of the gene for a pepsinogen, PEP1, is regulated by white-opaque switching in Candida albicans.. Mol Cell Biol 12:2997–3005
    [Google Scholar]
  33. Morrow B., Srikantha T., Anderson J., soll D.R. 1993; Coordinate regulation of two opaque-phase-specific genes during white-opaque switching in Candida albicans.. Infect Immun 61:1823–1828
    [Google Scholar]
  34. Morrow B., Ramsey H., soll D.R. 1994; Regulation of phase- specific genes in the more general switching system of Candida albicans strain 3153A.. J Med Vet Mycol 32:287–294
    [Google Scholar]
  35. Negroni P. 1935; Variacion bacia et tipo R de Mycotorula albicans.. Rev Soc Argent Biol 11:449–453
    [Google Scholar]
  36. Odds F.C., Merson-Davies L.A. 1989; Colony variations in Candida species.. Mycoses 32:275–282
    [Google Scholar]
  37. Ohama T., Suzuki T., Mori M., Osawa S., Uega T., Watanabe K., Nakase T. 1993; Non-universal decoding of the leucine codon CUG in several Candida species.. Nucleic Acids Res 21:4039–4045
    [Google Scholar]
  38. Paonessa G., Gounori F., Frank R., Cortese R. 1988; Purification of a NFl-like DNA-binding protein from rat liver and cloning of a corresponding cDNA.. EMBO J 7:3115–3123
    [Google Scholar]
  39. Pilus L., Rine J. 1989; Epigenetic inheritance of transcription states of S. cerevisiae.. Cell 59:637–647
    [Google Scholar]
  40. Pomès R., Gil C., Nombela C. 1985; Genetic analysis of Candida albicans morphological mutants.. J Gen Microbiol 131:2107–2113
    [Google Scholar]
  41. Praekelt U.M., Meacock P.A. 1990; MAP12, a new small heat shock gene of Saccharomyces cerevisiae-. analysis of structure, regulation and function.. Mol Gen Genet 223:97–106
    [Google Scholar]
  42. Ramsey H., Morrow B., soll D.R. 1994; An increase in switching frequency correlates with an increase in recombination of the ribosomal chromosomes of Candida albicans strain 3153A.. Microbiology 140:1525–1531
    [Google Scholar]
  43. Rikkerink E.H.A., Magee B.B., Magee P.T. 1988; Opaque-white phenotype transition: a programmed morphological transition in Candida albicans.. J Bacteriol 170:895–899
    [Google Scholar]
  44. Rustchenko-Bulgac E., Sherman F., Hicks J.B. 1990; Chromosomal rearrangements associated with morphological mutants provide a means for genetic variation in Candida albicans.. J Bacteriol 172:1276–1283
    [Google Scholar]
  45. Sadhu C., Hoekstra D., McEachern M.J., Reed S.I., Hicks J.B. 1992; A G-protein alpha subunit from asexual Candida albicans functions in the mating signal transduction pathway of Saccharomyces cerevisiae and is regulated by the a 1-alpha 2 repressor.. Mol Cell Biol 12:1977–1985
    [Google Scholar]
  46. Santos M., Colthurst D.R., Wills N., McLaughlin C.S., Tuite M.F. 1990; Efficient translation of the UAG termination codon in Candida species.. Curr Genet 17:487–491
    [Google Scholar]
  47. Santos M.A., Keith G., Tuite M.F. 1993; Non-standard translocational events in Candida albicans mediated by an unusual seryl-tRNA with a 5´-CAG-3´ (leucine) anticodon.. EMBO ] 12:607–616
    [Google Scholar]
  48. Saporito-lrwin S.M., Birse C.E., Sypherd P.S., Fonzi W.A. 1995; PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis.. Mol Cell Biol 15:601–613
    [Google Scholar]
  49. Scherer A., Stevens D.A. 1988; A Candida albicans dispersed, repeated gene family and its epidemiologic applications.. Proc Natl Acad Sci USA 851452–1456
    [Google Scholar]
  50. Schroppel K., Srikantha T., Wessels D., DeCock M., Lockhart S.R., soll D.R. 1996; Cytplasmic localization of the white phase-specific WH11 gene product of Candida albicans.. Microbiology 142:2245–2254
    [Google Scholar]
  51. Shore D., Nasmyth K. 1987; Purification and cloning of DNA binding protein from yeast that binds to both silencer and activator elements.. Cell 52:721–732
    [Google Scholar]
  52. Singh P., Ganesan K., Malathi K., Ghosh D., Datta A. 1994; ACPR, a STE12 homologue from Candida albicans, is a strong inducer of pseudohyphae in Saccharomyces cerevisiae haploids and diploids.. Biochem Biophys Res Commun 205:1079–1085
    [Google Scholar]
  53. Slutsky B., Buffo J., soll D.R. 1985; High frequency switching of colony morphology in Candida albicans.. Science 230:666–669
    [Google Scholar]
  54. Slutsky B., Staebell M., Anderson J., Risen J., Pfaller J., soll D.R. 1987; ‘White-opaque transition’: a second high-frequency switching system in Candida albicans.. J Bacteriol 169:189–197
    [Google Scholar]
  55. Soll D.R. 1992; High-frequency switching in Candida albicans.. Clin Microbiol Rev 5:183–203
    [Google Scholar]
  56. Soll D.R., Langtimm C.J., McDowell J., Hicks J., Galask R. 1987; High-frequency switching in Candida strains isolated from vaginitis patients.. J Clin Microbiol 25:1611–1622
    [Google Scholar]
  57. soll D.R., Galask R., Isley S., Rao T.V.G., Stone D., Hicks J., Schmid J., Mac K., Hanna C. 1989; ‘Switching’ of Candida albicans during successive episodes of recurrent vaginitis.. J Clin Microbiol 27:681–690
    [Google Scholar]
  58. soll D.R., Anderson J., Bergen M. 1991; The developmental biology of the white-opaque transition in Candida albicans.. In The Molecular Biology of Candida albicans pp. 20–45 Edited by Prasad R. Berlin: Springer;
    [Google Scholar]
  59. soll D.R., Srikantha T., Morrow B., Chandrasekhar A., Schröppel K., Lockhart S. 1995; Gene regulation in the white-opaque transition of Candida albicans.. Can J Bot 73: (Suppl. 1) S1049–S1057
    [Google Scholar]
  60. soll D.R., Srikantha T., Schröppel K., Lockhart S. 1997; Candida switching and pathogenesis: functional characterization of the promoters of phase-specific genes and development of a bioluminescent reporter system.. In Host-Fungus Interplay Edited by Stevens D., Vander Borsche H., Bethesda F. Odds. MD: National Foundation for Infectious Diseases (in press);
    [Google Scholar]
  61. Srikantha T., soll D. R. 1993; A white-specific gene in the white-opaque switching system of Candida albicans.. Gene 131:53–60
    [Google Scholar]
  62. Srikantha T., Chandrasekhar A., soll D.R. 1995a; Functional analysis of the promoter of the phase-specific WH11 gene of Candida albicans.. Mol Cell Biol 15:1797–1805
    [Google Scholar]
  63. Srikantha T., Morrow B., Schröppel K., soll D.R. 1995b; The frequency of integrative transformation at phase-specific genes of Candida albicans correlates with the transcriptional state.. Mol Gen Genet 246:342–352
    [Google Scholar]
  64. Srikantha T., Klapach A., Lorenz W.W., Tsai L.K., Laughlin L.A., Gorman J., soll D.R. 1996; The sea pansey Renilla reniformis luciferase serves as a sensitive bioluminescent reporter for differential gene expression in Candida albicans.. J Bacteriol 178:121–129
    [Google Scholar]
  65. Stone R.L., Matarese B.B., Magee P.T., Bernlohr D.A. 1990; Cloning, sequencing and chromosomal assignment of a gene from Saccharomyces cerevisiae which is negatively regulated by glucose and positively by lipids.. Gene 96:171–176
    [Google Scholar]
  66. Swanson J., Koomey J.M. 1989; Mechanisms for variation of pili and outer membrane protein II in Neisseria gonorrhoea.. In Mobile DNA pp. 743–762 Edited by Berg D.E., Howe M.M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  67. Tuite M.F., Bossier P., Fitch T. 1988; A highly conserved sequence in yeast heat shock gene promoters.. Nucleic Acids Res 16:11845
    [Google Scholar]
  68. Vargas K., Wertz P.W., Drake D., Morrow B., soll D.R. 1994; Differences in adhesion of Candida albicans 3153A cells exhibiting switch phenotypes to buccal epithelium and stratum corneum.. Infect Immun 62:1328–1335
    [Google Scholar]
  69. Vincent C.A., Struhl K. 1992; ACR1, a yeast ATF/CREB repressor.. Mol Cell Biol 12:5394–5405
    [Google Scholar]
  70. Vogel R.A., Sponeler R.S. 1970; The study and significance of colony dissociation in Candida albicans.. Sabouraudia 7:273–278
    [Google Scholar]
  71. de Wet J.R., Wood D.V., DeLuca M., Helsinki D.R., Subramani S. 1987; Firefly luciferase gene: structure and expression in mammalian cells.. Mol Cell Biol 7:725–737
    [Google Scholar]
  72. White T.C., Miyasaki S.H., Agabian N. 1993; Three distinct secreted aspartyl proteinases in Candida albicans.. J Bacteriol 175:6126–6133
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-2-279
Loading
/content/journal/micro/10.1099/00221287-143-2-279
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error