1887

Abstract

The broad-host-range, heat-tolerant strain BR816 produces sulphated Nod metabolites. Two ORFs highly homologous to the genes were isolated and sequenced. It was found that sp. BR816 contained two copies of these genes; one copy was localized on the symbiotic plasmid, the other on the megaplasmid. Both nodP genes were interrupted by insertion of antibiotic resistance cassettes, thus constructing a double mutant strain. However, no detectable differences in Nod factor TILC profile from this mutant were observed as compared to the wild-type strain. Additionally, plant inoculation experiments did not reveal differences between the mutant strain and the wild-type. It is proposed that a third, functionally homologous locus complements mutations in the Nod factor sulphation genes. Southern blot analysis suggested that this locus contains genes necessary for the sulphation of amino acids.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-12-3933
1997-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/12/mic-143-12-3933.html?itemId=/content/journal/micro/10.1099/00221287-143-12-3933&mimeType=html&fmt=ahah

References

  1. Baev N., Endre G., Petrovics G., Banfalvi Z., Kondorosi A. 1991; Six nodulation genes of nod box locus 4 in Rhizobium meliloti are involved in nodulation signal production: nodM encodes D-glucosamine synthetase.. Mol Gen Genet 228:113–124
    [Google Scholar]
  2. Beringer J.E. 1974; R-factor transfer in Rhizobium legumino- sarum. . J Gen Microbiol 84:188–198
    [Google Scholar]
  3. Carlson R.W., Sanjuan J., Bhat U.R. 7 other authors 1993; The structures and biological activities of the lipo-oligosaccharide nodulation signals produced by type I and II strains of Bradyrhizobium japonicum. . J Biol Chem 268:18372–18381
    [Google Scholar]
  4. Cervantes E., Sharma S.B., Maillet F., Vasse J., Truchet G., Rosenberg C. 1989; The Rhizobium meliloti host range nodQ gene encodes a protein which shares homology with translation elongation and initiation factors.. Mol Microbiol 3:745–755
    [Google Scholar]
  5. Cloutier J., Laberge S., Castonguay Y., Antoun H. 1996; Characterization and mutational analysis of nodHPQ genes of Rhizobium strain N33.. Mol Plant-Microbe Interact 9:720–728
    [Google Scholar]
  6. Corbin D., Barran L., Ditta G. 1983; Organization and expression of Rhizobium meliloti nitrogen fixation genes.. Proc Natl Acad Sci USA 803005–3009
    [Google Scholar]
  7. Debellé F., Sharma S.B. 1986; Nucleotide sequence of Rhizobium meliloti RCR2011 genes involved in host specificity of nodulation.. Nucleic Acids Res 14:7453–7472
    [Google Scholar]
  8. Debellé F., Plazanet C., Roche P., Pujol O, Savagnac A., Rosenberg C., Promé J.-C., Dénarié J. 1996; The NodA proteins of Rhizobium meliloti and Rhizobium tropici specify the N-acylation of Nod factors by different fatty acids.. Mol Microbiol 22:303–314
    [Google Scholar]
  9. Dénarié J., Debellé F., Promé J.-C. 1996; Rhizobium lipo- chitooligosaccharide nodulation factors: signalling molecules mediating recognition and morphogenesis.. Annu Rev Biochem 65:503–535
    [Google Scholar]
  10. Dever E.T., Glynias M.J., Merrick W.C. 1987; GTP-binding domain: three consensus sequence elements with distinct spacing.. Proc Natl Acad Sci USA 841814–1818
    [Google Scholar]
  11. Downie J.A. 1989; The nodL gene from Rhizobium legumino- sarum is homologous to transacetylases encoded by lacA and cysE. . Mol Microbiol 3:1649–1651
    [Google Scholar]
  12. Ehrhardt D.W., Atkinson E.M., Faull K.F., Freedberg D.I., Sutherlin D.P., Armstrong R., Long S.R. 1995; In vitro sulfotransferase activity of NodH, a nodulation protein of Rhizobium meliloti required for host-specific nodulation.. J Bacteriol 177:6237–6245
    [Google Scholar]
  13. Faucher C., Maillet F., Vasse J., Rosenberg C., van Brussel A.A.N., Truchet G., Dénarié J. 1988; Rhizobium meliloti host range nodli gene determines production of an alfalfa-specific extracellular signal.. J Bacteriol 170:5489–5499
    [Google Scholar]
  14. Folch-Mallol J.L., Marroquí S., Sousa C. 9 other authors 1996; Characterization of Rhizobium tropici CIAT899 nodulation factors: the role of nodH and nodPQ genes in their sulfation.. Mol Plant-Microbe Interact 9:151–163
    [Google Scholar]
  15. Friedman A.M., Long S.R., Brown S.E., Buikema W.J., Ausubel F.M. 1982; Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants.. Gene 18:289–296
    [Google Scholar]
  16. Geelen D., Mergaert P., Geremia R.A., Goormachtig S., Van Montagu M., Holsters M. 1993; Identification of nodSUIJ genes in Nod locus 1 of Azorhizobium caulinodans: evidence that nodS encodes a methyltransferase involved in Nod factor modification.. Mol Microbiol 9:145–154
    [Google Scholar]
  17. Géniaux E., Flores M., Palacios R., Martínez E. 1995; Presence of megaplasmids in Rhizobium tropici and further evidence of differences between the two R. tropici subtypes.. Int J Syst Microbiol 45:392–394
    [Google Scholar]
  18. Hernxández-Lucas I., Segovia L., Martínez-Romero E., Pueppke S.G. 1995; Phylogenetic relationships and host range of Rhi-zobium spp. that nodulate Phaseolus vulgaris L.. Appl Environ Microbiol 61:2775–2779
    [Google Scholar]
  19. Hungria M., Franco A.A., Sprent J.I. 1993; New sources of high-temperature tolerant rhizobia for Phaseolus vulgaris L.. Plant Soil 149:103–109
    [Google Scholar]
  20. Jabbouri S., Fellay R., Talmont F., Kamalaprija P., Burger U., Relic B., Promé J.-C., Broughton W.J. 1995; Involvement of nodS in N-methylation and nodU in 6-O-carbamoylation of Rhizobium sp. NGR234 Nod factors.. J Biol Chem 270:22968–22973
    [Google Scholar]
  21. Jones J.D.G., Gutterson N. 1987; An efficient mobilizable cosmid vector, pRK7813, and its use in a rapid method for marker exchange in Pseudomonas fluorescens strain HV37a.. Gene 61:299–306
    [Google Scholar]
  22. Knauf V.C., Nester E.W. 1982; A cosmid clone bank of an Agrobacterium Ti plasmid.. Plasmid 8:45–54
    [Google Scholar]
  23. Kohno K., Uchida T., Ohkubo H., Nakanishi S., Nakanishi T., Fukui T., Ohtsuka E., Ikehara M., Okada Y. 1986; Amino acid sequence of mammalian elongation factor 2 deduced from the cDNA sequence: homology with GTP-binding sites.. Proc Natl Acad Sci USA 834978–4982
    [Google Scholar]
  24. Kondorosi A. 1991; Regulation of nodulation genes in rhizobia.. In Molecular Signals in Plant-Microbe Communication pp. 325–340 Edited by Verma D. P. S. Boca Raton, FL: CRC Press;
    [Google Scholar]
  25. Kredich N.M. 1987; Biosynthesis of cysteine.. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp. 419–427 Edited by Neidhardt F. C. others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Laeremans T., Caluwaerts I., Verreth C., Rogel M.A., Vander-leyden J., Martínez-Romero E. 1996; Isolation and charac-terization of the Rhizobium tropici Nod factor sulfation genes.. Mol Plant-Microbe Interact 9:492–500
    [Google Scholar]
  27. Lerouge P., Roche P., Faucher C., Maillet F., Truchet G., Promé J.-C., Dénarié J. 1990; Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal.. Nature 344:781–784
    [Google Scholar]
  28. Leyh T.S., Taylor J.C., Markham G.D. 1988; The sulfate activation locus of Escherichia coli K-12: cloning, genetic, and enzymic characterization.. J Biol Chem 263:2409–2416
    [Google Scholar]
  29. Leyh T.S., Vogt T.F., Suo Y. 1992; The DNA sequence of the sulfate activation locus from Escherichia coli K-12.. J Biol Chem 267:10405–10410
    [Google Scholar]
  30. Marie C., Barny M.-A., Downie J.A. 1992; Rhizobium leguminosarum has two glucosamine synthases, GlmS and NodM, required for nodulation and development of nitrogenfixing nodules.. Mol Microbiol 6:843–851
    [Google Scholar]
  31. Marsh J.L., Erfle M., Wykes E.J. 1984; The pIC plasmids and phage vectors with versatile cloning sites for recombinant selection by insertional inactivation.. Gene 32:481–485
    [Google Scholar]
  32. Martinez E., Pardo M.A., Palacios R., Cevallos M.A. 1985; Reiteration of nitrogen fixation gene sequences and specificity of Rhizobium in nodulation and nitrogen fixation in Phaseolus vulgaris. . J Gen Microbiol 131:1779–1786
    [Google Scholar]
  33. Mergaert P., Van Montagu M., Promé J.-C., Holsters M. 1993; Three unusual modifications, a D-arabinosyl, a N-methyl, and a carbamoyl group are present on the Nod factors of Azorhizobium caulinodans strain ORS571.. Proc Natl Acad Sci USA 901551–1555
    [Google Scholar]
  34. Mergaert P., D’Haeze W., Fernández-López M., Geelen D., Goethals K., Promé J.-C., Van Montagu M., Holsters M. 1996; Fucosylation and arabinosylation of Nod factors in Azorbizobium caulinodans: involvement of nolK, nodZ as well as noeC and/or downstream genes.. Mol Microbiol 21:409–419
    [Google Scholar]
  35. Mulligan J.T., Long S.R. 1985; Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. . Proc Natl Acad Sci USA 826609–6613
    [Google Scholar]
  36. Murillo J., Shen H., Gerhold D., Sharma A., Cooksey D.A., Keen N.T. 1994; Characterization of pPT23B, the plasmid involved in syringolide production by Pseudomonas syringae pv.tomato PT23.. Plasmid 31:275–287
    [Google Scholar]
  37. Mylona P., Pawlowski K., Bisseling T. 1995; Symbiotic nitrogen fixation.. Plant Cell 7:869–885
    [Google Scholar]
  38. Norrander J., Kempe T., Messing J. 1983; Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis.. Gene 26:101–106
    [Google Scholar]
  39. Orgambide G.G., Lee J., Hollingsworth R.I., Dazzo F.B. 1995; . Structurally diverse chitolipooligosaccharide Nod factors accumulate primarily in membranes of wild-type Rhizobium leguminosarum biovar trifolii. . Biochemistry 34:3832–3840
    [Google Scholar]
  40. Petersen G.B., Stockwell P.A., Hill D.F. 1988; Messenger RNA recognition in Escherichia coli: a possible second site of interaction with 16S ribosomal RNA.. EMBO J 7:3957–3962
    [Google Scholar]
  41. Poupot R., Martínez-Romero E., Promé J.-C. 1993; Nodu- lation factors from Rhizobium tropici are sulfated or nonsulfated chitopentasaccharides containing an N-methyl-N-acylglucos- aminyl terminus.. Biochemistry 32:10430–10435
    [Google Scholar]
  42. Poupot R., Martínez-Romero E., Gautier N., Promé J.-C. 1995a; Wild-type Rhizobium etli, a bean symbiont, produces acetyl-fucosylated, N-methylated, and carbamoylated nodulation factors.. J Biol Chem 270:6050–6055
    [Google Scholar]
  43. Poupot R., Martínez-Romero E., Maillet F., Promé J.-C. 1995b; Rhizobium tropici nodulation factor sulfation is limited by the quantity of activated form of sulfate.. FEBS Lett 368:536–540
    [Google Scholar]
  44. Price N.P.J., Relic B., Talmont F. 7 other authors 1992; Broad-host-range Rhizobium species strain NGR234 secretes a family of carbamoylated, and fucosylated, nodulation signals that are O-acetylated or sulphated.. Mol Microbiol 6:3575–3584
    [Google Scholar]
  45. Quandt J., Hynes M.F. 1993; Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria.. Gene 127:15–21
    [Google Scholar]
  46. van Rhijn P.J.S., Feys B., Verreth C., Vanderleyden J. 1993; Multiple copies of nodD in Rhizobium tropici CIAT899 and BR816. J Bacterial 175:438–447
    [Google Scholar]
  47. van Rhijn P., Luyten E., Vlassak K., Vanderleyden J. 1996; Isolation and characterization of a pSym locus of Rhizobium sp. BR816 that extends nodulation ability of narrow host range Phaseolus vulgaris symbionts to Leucaena leucocephala. . Mol Plant-Microbe Interact 9:74–77
    [Google Scholar]
  48. Ritsema T., Wijfjes A.H.M., Lugtenberg B.J.J., Spaink H.P. 1996; Rhizobium nodulation protein NodA is a host-specific determinant of the transfer of fatty acids in Nod factor biosynthesis.. Mol Gen Genet 251:44–51
    [Google Scholar]
  49. Roche P., Debellé F., Maillet F., Lerouge P., Faucher C., Truchet G., Dénarié J.8rProm6, Promé J.-C. 1991; Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals.. Cell 67:1131–1143
    [Google Scholar]
  50. Sanjuan J., Carlson R.W., Spaink H.P., Bhat U.R., Barbour W.M., Glushka J., Stacey G. 1992; A 2-O-methylfucose moiety is present in the lipo-oligosaccharide nodulation signal of Brady- rhizobium japonicum. . Proc Natl Acad Sci USA 898789–8793
    [Google Scholar]
  51. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  52. Satishchandran C., Hickman Y.N, Markham G.D. 1992; Characterization of the phosphorylated enzyme intermediate formed in the adenosine 5´-phosphosulfate kinase reaction.. Biochemistry 31:11684–11688
    [Google Scholar]
  53. Schultze M., Kondorosi E., Kondorosi A. 1993; The sulfate group on the reducing end protects Nod signals of Rhizobium meliloti against hydrolysis by medicago chitinases.. In New Horizons in Nitrogen Fixation pp. 159–164 Edited by Palacios R., Mora J., Newton W. E. Dordrecht: Kluwer;
    [Google Scholar]
  54. Schultze M., Staehelin C., Röhrig H., John M., Schmidt J., Kondorosi E., Schell J., Kondorosi A. 1995; In vitro sulfotransferase activity of Rhizobium meliloti NodH protein: lipochitooligosaccharide nodulation signals are sulfated after synthesis of the core structure.. Proc Natl Acad Sci USA 922706–2709
    [Google Scholar]
  55. Schwedock J., Long S.R. 1989; Nucleotide sequence and protein products of two new nodulation genes of Rhizobium meliloti, nodP and nodQ. . Mol Plant-Microbe Interact 2:181–194
    [Google Scholar]
  56. Schwedock J., Long S.R. 1990; ATP sulphurylase activity of the nodP and nodQ gene products of Rhizobium meliloti. . Nature 348:644–647
    [Google Scholar]
  57. Schwedock J.S., Long S.R. 1992; Rhizobium meliloti genes involved in sulfate activation: the two copies of nodPQ and a new locus, saa. . Genetics 132:899–909
    [Google Scholar]
  58. Schwedock J.S., Liu C., Leyh T.S., Long S.R. 1994; Rhizobium meliloti NodP and NodQ form a multifunctional sulfate-activating complex requiring GTP for activity.. J Bacteriol 176:7055–7064
    [Google Scholar]
  59. Spaink H.P. 1996; Regulation of plant morphogenesis by lipo- chitin oligosaccharides.. Crit Rev Plant Sci 15:559–582
    [Google Scholar]
  60. Spaink H.P., Wijfjes A.H.M., Lugtenberg B.J.J. 1995; Rhizobium Nodi and NodJ proteins play a role in the efficiency of secretion of lipochitin oligosaccharides.. J Bacteriol 177:6276–6281
    [Google Scholar]
  61. Staehelin C., Schultze M., Kondorosi E., Mellor R.B., Boiler T., Kondorosi A. 1994; Structural modifications in Rhizobium meliloti Nod factors influence their stability against hydrolysis by root chitinases.. Plant J 5:319–330
    [Google Scholar]
  62. Truchet G., Roche P., Lerouge P., Vasse J., Camut S., de Billy F., Promé J.-C, Dénarié J. 1991; Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa.. Nature 351:670–673
    [Google Scholar]
  63. Van den Eede G., Deblaere R., Goethals K., Van Montagu M., Holsters M. 1992; Broad host range and promoter selection vectors for bacteria that interact with plants.. Mol Plant-Microbe Interact 5:228–234
    [Google Scholar]
  64. Vieille C., Elmerich C. 1990; Characterization of two Azospirillum brasilense Sp7 plasmid genes homologous to Rhizobium meliloti nodPQ . Mol Plant-Microbe Interact 3:389–400
    [Google Scholar]
  65. Waelkens F., Voets T., Vlassak K., Vanderleyden J., van Rhijn P. 1995; The nodS gene of Rhizobium tropici strain CIAT899 is necessary for nodulation on Phaseolus vulgaris and on Leucaena leucocephala. . Mol Plant-Microbe Interact 8:147–154
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-12-3933
Loading
/content/journal/micro/10.1099/00221287-143-12-3933
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error