1887

Abstract

The and genes, encoding two alternative sigma factors of the unicellular marine cyanobacterium sp. PCC 7002, were cloned and characterized. Strains in which the and genes were insertionally inactivated were viable under standard laboratory conditions, indicating that SigB and SigC are group 2 sigma factors. Starvation for either nitrogen or carbon caused an increase in mRNA levels. Transcripts for the gene initially increased but then decreased during nitrogen and carbon starvation. The SigC protein could not be identified in cyanobacterial extracts using antisera to sp. PCC 7002 SigA or RpoD from The ratio of the principal vegetative sigma factor, SigA, to SigB decreased during either nitrogen starvation or carbon starvation, and the levels of SigB also increased in the mutant strain. These results imply that SigB and SigC play roles in modifying transcription in response to changes in carbon and nitrogen availability in this cyanobacterium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-12-3807
1997-12-01
2021-07-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/12/mic-143-12-3807.html?itemId=/content/journal/micro/10.1099/00221287-143-12-3807&mimeType=html&fmt=ahah

References

  1. Binnie C., Lampe M., Losick R. 1986; Gene encoding the sigma 37 species of RNA polymerase sigma factor from Bacillus subtilis.. Proc Natl Acad Sci USA 835943–5947
    [Google Scholar]
  2. Brahamsha B., Haselkorn R. 1991; Isolation and characterization of the gene encoding the principal sigma factor of the vegetative cell RNA polymerase from the cyanobacterium Anabaena sp. strain PCC 7120.. J Bacteriol 173:2442–2450
    [Google Scholar]
  3. Brahamsha B., Haselkorn R. 1992; Identification of multiple RNA polymerase sigma factor homologs in the cyanobacterium Anabaena sp. strain PCC 7120: cloning, expression and inactivation of the sigB and sigC genes.. J Bacteriol 174:7273–7282
    [Google Scholar]
  4. Bryant D.A. (editor) 1994 The Molecular Biology of Cyanobacteria. Dordrecht:: Kluwer.;
    [Google Scholar]
  5. Bukau B. 1993; Regulation of the Escherichia coli heat-shock response.. Mol Microbiol 9:671–680
    [Google Scholar]
  6. Bult C.J., White O., Olsen G.J. 37 other authors 1996; Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii.. Science 273:1058–1073
    [Google Scholar]
  7. Burgess R.R., Travers A.A., Dunn J.J., Bautz E.K.F. 1969; Factor stimulating transcription by RNA polymerase.. Nature 221:43–46
    [Google Scholar]
  8. Burton Z.F., Burgess R.R., Lin J., Moore D., Holder S., Gross C.A. 1981; The nucleotide sequence of the cloned rpoD gene for the RNA polymerase sigma subunit from E. coli K12.. Nucleic Acids Res 9:2889–2903
    [Google Scholar]
  9. Busby S., Ebright R.H. 1994; Promoter structure, promoter recognition, and transcription activation in prokaryotes.. Cell 79:743–746
    [Google Scholar]
  10. Buzby J.S., Porter R.D., Stevens S.E. Jr 1983; Plasmid transformation in Agmenellum quadruplicatum PR-6: construction of biphasic plasmids and characterization of their transformation properties.. J Bacteriol 154:1446–1450
    [Google Scholar]
  11. Caslake L.F., Bryant D.A. 1996; The sigA gene encoding the major σ factor of RNA polymerase from the marine cyanobacterium Synechococcus sp. strain PCC 7002: cloning and characterization.. Microbiology 142:347–357
    [Google Scholar]
  12. Chang B.Y., Doi R.H. 1990; Overproduction, purification and characterization of the Bacillus subtilis polymerase σA factor.. J Bacteriol 172:3257–3263
    [Google Scholar]
  13. Curtis S.E., Martin J.A. 1994; The transcription apparatus and the regulation of transcription initiation.. In The Molecular Biology of Cyanobacteria pp. 613–639 Bryant D.A. Edited by Dordrecht:: Kluwer.;
    [Google Scholar]
  14. Dombroski A.J., Walter W.A., Record M.T. Jr Siegele D.A., Gross C.A. 1992; Polypeptides containing highly conserved regions of transcription initiation factor σ70 exhibit specificity of binding to promoter DNA.. Cell 70:501–512
    [Google Scholar]
  15. Dombroski A.J., Walter W.A., Gross C.A. 1993; Amino-terminal amino acids modulate σ-factor DNA-binding activity.. Genes Dev 7:2446–2455
    [Google Scholar]
  16. Dombroski A.J., Johnson B.D., Lonetto M., Gross C.A. 1996; The sigma subunit of Escherichia coli RNA-polymerase senses promoter spacing.. Proc Natl Acad Sci USA 938858–8862
    [Google Scholar]
  17. Doolittle W.R. 1972; Ribosomal ribonucleic acid synthesis and maturation in the blue-green alga Anacystis nidulans.. J Bacteriol 111:316–324
    [Google Scholar]
  18. Gasparich G.E., Buzby J., Bryant D.A., Porter R.D., Stevens S.E. Jr 1987; The effects of light-intensity and nitrogen starvation on the phycocyanin promoter in the cyanobacterium Synechococcus PCC 7002.. In Progress in Photosynthesis Research IV pp. 761–764 Biggins J. Edited by Dordrecht:: Martinus-Nijhoff.;
    [Google Scholar]
  19. Goodrich J.A., Tjian R. 1994; TBP-TAF complexes: selectivity factors for eukaryotic transcription.. Curr Opin Cell Biol 6:403–409
    [Google Scholar]
  20. Grossman A.D., Erickson J.W., Gross C.A. 1984; The htpRgene product of E. coli is a sigma factor for heat-shock promoters.. Cell 38:383–390
    [Google Scholar]
  21. Grossman A.R., Schaefer M.R., Chiang G.G., Collier J.L. 1994; The responses of cyanobacteria to environmental conditions: light and nutrients.. In The Molecular Biology of Cyanobacteria pp. 641–675 Bryant D.A. Edited by Dordrecht:: Kluwer.;
    [Google Scholar]
  22. Gruber T., Bryant D.A. 1997; Molecular systematic studies of eubacteria using σ70-type sigma factors of Group 1 and Group 2.. J Bacteriol 179:1734–1747
    [Google Scholar]
  23. Haldenwang W.G. 1995; The sigma factors of Bacillus subtilis.. Microbiol Rev 59:1–30
    [Google Scholar]
  24. Harley C.B., Reynolds R.P. 1987; Analysis of E. coli promoter sequences.. Nucleic Acids Res 15:2343–2361
    [Google Scholar]
  25. Helmann J.D., Chamberlin M.J. 1988; Structure and function of bacterial sigma factors.. Annu Rev Biochem 57:839–872
    [Google Scholar]
  26. Hu J., Gross C. 1985; Mutations in the sigma subunit of Escherichia coli RNA polymerase which affect positive control of transcription.. Mol Gen Genet 199:7–13
    [Google Scholar]
  27. Kaneko T., Sato S., Kotani H. 21 other authors 1996a; Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions.. DNA Res 3:109–136
    [Google Scholar]
  28. Kaneko T., Sato S., Kotani H. 21 other authors 1996b; Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement).. DNA Res 3:185–209
    [Google Scholar]
  29. Kato F., Hino T., Nakaji A., Tanaka M., Koyama Y. 1995; Carotenoid synthesis in Streptomyces setonii ISP5395 is induced by the gene crtS, whose product is similar to a sigma factor.. Mol Gen Genet 247:387–390
    [Google Scholar]
  30. Kolter R., Siegele D.A., Tormo A. 1993; The stationary phase of the bacterial life cycle.. Annu Rev Microbiol 47:855–874
    [Google Scholar]
  31. Kumano M., Tomioka N., Sugiura M. 1983; The complete nucleotide sequence of a 23S rRNA gene from a blue-green alga, Anacystis nidulans.. Gene 24:219–225
    [Google Scholar]
  32. Kustu S., Santero E., Keener J., Popham D., Weiss D. 1989; Expression of σ54 (ntrA)-dependent genes is probably united by a common mechanism.. Microbiol Rev 53:367–376
    [Google Scholar]
  33. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4.. Nature 227:680–685
    [Google Scholar]
  34. Li M., Moyle H., Susskind M.M. 1994; Target of the transcriptional activation function of phage λcI protein.. Science 263:75–77
    [Google Scholar]
  35. Liu X., Matsumura P. 1995; An alternative sigma factor controls transcription of flagellar class-III operons in Escherichia coli: gene sequence, overproduction, purification and characterization.. Gene 164:81–84
    [Google Scholar]
  36. Lonetto M.A., Gribskov M., Gross C.A. 1992; The σ70 family: sequence conservation and evolutionary relationships.. J Bacteriol 174:3843–3849
    [Google Scholar]
  37. Lonetto M.A., Brown K.I., Rudd K.E., Buttner M.J. 1994; Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase a factors involved in the regulation of extracytoplasmic functions.. Proc Natl Acad Sci USA 917573–7577
    [Google Scholar]
  38. McCann M.P., Kidwell J.P., Matin A. 1991; The putative σfactor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli.. J Bacteriol 173:4188–4194
    [Google Scholar]
  39. Mager W.M., de Kruijff A.J.J. 1995; Stress induced transcriptional activation.. Microbiol Rev 59:506–531
    [Google Scholar]
  40. Malhotra A., Severinova E., Darst S. 1996; Crystal structure of a σ70 subunit fragment from E. coli RNA polymerase.. Cell 87:127–136
    [Google Scholar]
  41. Moran C.P. Jr 1993; RNA polymerase and transcription factors.. In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics pp. 653–667 Sonenshein A.L., Hoch J.A., Losick R. Edited by Washington, DC:: American Society for Microbiology.;
    [Google Scholar]
  42. Mulvey M.R., Loewen P.C. 1989; Nucleotide sequence of katF of Escherichia coli suggests KatF protein is a novel sigma transcription factor.. Nucleic Acids Res 17:9979–9991
    [Google Scholar]
  43. Nohno T., Kasai Y., Saito T. 1988; Cloning and sequencing of the Escherichia coli chlEN operon involved in molybdopterin biosynthesis.. J Bacteriol 170:4097–4102
    [Google Scholar]
  44. Ptashne M., Gann A. 1997; Transcriptional activation by recruitment.. Nature 386:569–577
    [Google Scholar]
  45. Record M.T. Jr Reznikoff W.S., Craig M.L., McQuade K.L., Schlax P.J. 1996; Escherichia coli RNA polymerase (Eer70), promoters, and the kinetics of the steps of transcription initiation.. In Escherichia coli and Salmonella: Cellular and Molecular Biology 1 pp. 792–820 Neidhardt F.C. Edited by Washington, DC:: American Society for Microbiology.;
    [Google Scholar]
  46. Richardson J.P., Greenblatt J. 1996; Control of RNA chain elongation and termination.. In Escherichia coli and Salmonella: Cellular and Molecular Biology 1 pp. 822–848 Neidhardt F.C. Edited by Washington, DC:: American Society for Microbiology.;
    [Google Scholar]
  47. Schneider G.J., Lang J.D., Haselkorn R. 1991; Promoter recognition by the RNA polymerase from vegetative cells of the cyanobacterium Anabaena 7120.. Gene 105:51–60
    [Google Scholar]
  48. Schyns G., Sobczyk A., Tandeau de Marsac N., Houmard J. 1994; Specific initiation of transcription at a cyanobacterial promoter with RNA polymerase purified from Calothrix sp. PCC 7601.. Mol Microbiol 13:887–896
    [Google Scholar]
  49. Siegele D.A., Hu J.C., Walter W.A., Gross C.A. 1989; Altered promoter recognition by mutant forms of the σ70 subunit of Escherichia coli RNA polymerase.. J Mol Biol 206:591–603
    [Google Scholar]
  50. Stragier P. 1991; Dances with sigmas.. EMBO 10:3559–3566
    [Google Scholar]
  51. Studier F.W., Rosenberg A.H., Dunn J.J., Dubendorff J.W. 1990; Use of T7 RNA polymerase to direct expression of cloned genes.. Methods Enzymol 185:60–89
    [Google Scholar]
  52. Tanaka K., Shiina T., Takahashi H. 1991; Nucleotide sequence of genes hrdA, hrdC, and hrdD from Streptomyces coelicolorA3 (2) having similarity to rpoD genes.. Mol Gen Genet 229:334–340
    [Google Scholar]
  53. Tanaka K., Shiina T., Takahashi H. 1992a; Multiple rpoD-related genes of cyanobacteria.. Biosci Biotechnol Biochem 56:1113–1117
    [Google Scholar]
  54. Tanaka K., Shiina T., Takahashi H. 1992b; The complete nucleotide sequence of the gene rpoD1 encoding the prinicipal σfactor of the RNA polymerase from the cyanobacterium Synechococcus sp. strain PCC 7942.. Biochim Biophys Acta 1132:94–96
    [Google Scholar]
  55. Tandeau de Marsac N., Houmard J. 1993; Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms.. FEMS Microbiol Rev 104:119–190
    [Google Scholar]
  56. Tomioka N., Sugiura M. 1983; The complete nucleotide sequence of a 16S ribosomal RNA gene from a blue-green alga, Anacystis nidulans.. Mol Gen Genet 191:46–50
    [Google Scholar]
  57. Tsinoremas N.F., Ishiura M., Kondo T., Andersson C.R., Tanaka K., Takahashi H., Johnson C.H., Golden S.S. 1996; A sigma factor that modifies the circadian expression of a subset of genes in cyanobacteria.. EMBO J 15:2488–2495
    [Google Scholar]
  58. Wealand J.L., Myers J.A., Hirschberg R. 1989; Changes in gene expression during nitrogen starvation in Anabaena variabilisATCC 29413.. J Bacteriol 171:1309–1313
    [Google Scholar]
  59. Wu S., de Lencastre H., Tomasz A. 1996; Sigma-B, a putative operon encoding alternate sigma factor of Staphylococcus aureusRNA polymerase: molecular cloning and DNA sequencing.. J Bacteriol 178:6036–6042
    [Google Scholar]
  60. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors.. Gene 33:103–119
    [Google Scholar]
  61. Zhou J., Gasparich G.E., Stirewalt V.L., de Lorimier R., Bryant D.A. 1992; The cpcE and cpcF genes of Synechococcussp. PCC 7002: construction and phenotypic characterization of interposon mutants.. J Biol Chem 267:16138–16145
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-12-3807
Loading
/content/journal/micro/10.1099/00221287-143-12-3807
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error