1887

Abstract

The nucleotide sequence has been determined for a twelve-gene operon of designated the operon (). The operon is located at 55.8-56.0 min and encodes a putative nine-subunit hydrogenase complex (hydrogenase four or Hyf), a potential formate- and σdependent transcriptional activator, HyfR (related to FhlA), and a possible formate transporter, FocB (related to FocA). Five of the nine Hyf-complex subunits are related to subunits of both the hydrogenase-3 complex (Hyc) and the proton-translocating NADH:quinone oxidoreductases (complex I and Nuo), whereas two Hyf subunits are related solely to NADH:quinone oxidoreductase subunits. The Hyf components include a predicted 523 residue [Ni-Fe] hydrogenase (large subunit) with an N-terminus (residues 1-170) homologous to the 30 kDa or NuoC subunit of complex I. It is proposed that Hyf, in conjunction with formate dehydrogenase H (Fdh-H), forms a hitherto unrecognized respiration-linked proton-translocating formate hydrogenlyase (FHL-2). It is likely that HyfR acts as a formate-dependent regulator of the operon and that FocB provides the Hyf complex with external formate as substrate.

Keyword(s): complex I , FhlA , FocA , formate and hydrogenase
Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-11-3633
1997-11-01
2021-05-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/11/mic-143-11-3633.html?itemId=/content/journal/micro/10.1099/00221287-143-11-3633&mimeType=html&fmt=ahah

References

  1. Abou-Jaoudé A., Pascal M.-C., Chippaux M. 1979; Formatenitrite reduction in Escherichia coli K-12. 2. Identification of components involved in electron transfer.. Eur J Biochem 95:315–321
    [Google Scholar]
  2. Andersson S.G.E., Kurland C.G. 1990; Codon preferences in free-living micro-organisms.. Microbiol Rev 54:198–210
    [Google Scholar]
  3. Andrews S.C., Harrison P. M., Guest J. R. 1991; A molecular analysis of the 53·3 minute region of the Escherichia coli linkage map. . J Gen Microbiol 137:361–367
    [Google Scholar]
  4. Ballantine S.P., Boxer D.H. 1986; Isolation and characterization of a soluble fragment of hydrogenase isoenzyme 2 from the membranes of anaerobically grown Escherichia coli. . Eur J Biochem 156:277–284
    [Google Scholar]
  5. Bartolomé B., Jubete Y., Martínez E., de la Cruz F. 1991; Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives.. Gene 102:75–78
    [Google Scholar]
  6. Belogrudov G. 1994; Catalytic sector of complex I (NADH: ubiquinone oxidoreductase): subunit stoichiometry and substrate-induced conformation changes.. Biochemistry 33:4571–4576
    [Google Scholar]
  7. Berks B. C, Page M.D., Richardson D.J., Reilly A., Cavill A., Outen F., Ferguson S.J. 1995a; Sequence analysis of subunits of the membrane-bound nitrate reductase from a denitrifying bacterium: the integral membrane subunit provides a prototype for the dihaem electron-carrying arm of a redox loop.. Mol Microbiol 15:319–331
    [Google Scholar]
  8. Berks B. C., Ferguson S.J., Moir J.W.B., Richardson D.J. 1995b; Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxy- anions. . Biochim Biophys Acta 1232:97–173
    [Google Scholar]
  9. Berlyn M.B., Brooks Low K., Rudd K.E. 1996; Linkage map of Escherichia coli K-12, edition 9. . In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd edn. pp. 1715–1902 Neidhardt F.C. others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. Binder U., Maier T., Böck A. 1996; Nickel incorporation into hydrogenase 3 from Escherichia colirequires the precursor form of the large subunit.. Arch Microbiol 165:69–72
    [Google Scholar]
  11. Birkmann A., Sawer R.G., Böck A. 1987; Involvement of the ntrA gene product in the anaerobic metabolism of Escherichia coli. . Mol Gen Genet 210:535–542
    [Google Scholar]
  12. Böck A., Sawers G. 1996; Fermentation.. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd edn. pp. 262–282 Neidhardt F.C. others Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Böhm R., Sauter M., Böck A. 1990; Nucleotide sequence and expression of an operon in Escherichia coliencoding formate hydrogenlyase components.. Mol Microbiol 4:231–243
    [Google Scholar]
  14. Boyington J.G, Gladyshev V.D., Khangulov S.V., Stadtman T.C., Sun P.D. 1997; Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an 4Fe4S cluster.. Science 275:1305–1308
    [Google Scholar]
  15. BrØndsted L., Atlung T. 1994; Anaerobic regulation of the hydrogenase 1 (hya)operon of Escherichia coli. . J Bacteriol 176:5423–5428
    [Google Scholar]
  16. BrØndsted L., Atlung T. 1996; Effect of growth conditions on expression of the acid phosphatase (cyx-appA) operon and the appYgene, which encodes a transcriptional activator of Escherichia coli. . J Bacteriol 178:156–1564
    [Google Scholar]
  17. Bult C.J., White O., Olsen G.J. 37 other authors 1996; Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. . Science 273:1058–1073
    [Google Scholar]
  18. Clarke L., Carbon J. 1976; A colony bank containing synthetic ColEl hybrid plasmids representative of the entire E. coligenome.. Cell 9:91–99
    [Google Scholar]
  19. Cleeter M.W.J., Banister S.H., Ragan C.I. 1985; Chemical cross-linking of mitochondrial NADH dehydrogenase from bovine heart.. Biochem J 227:467–474
    [Google Scholar]
  20. Darwin A., Tormay P., Page L., Griffiths L., Cole J. 1993; Identification of the formate dehydrogenases and genetic determinants of formate-dependent nitrite reduction by Escherichia coli. . J Gen Microbiol 139:1829–1840
    [Google Scholar]
  21. Dear S., Staden R. 1991; A sequence assembly and editing program for efficient management of large projects.. Nucleic Acids Res 19:3907–3911
    [Google Scholar]
  22. Dodd I.B., Egan J.B. 1987; Systematic method for the detection of potential λ Cro-like DNA-binding regions in proteins.. J Mol Biol 194:557–564
    [Google Scholar]
  23. Drummond M., Whitty P., Wotton J. 1986; Sequence and domain relationships of ntrCand nifAfrom Klebsiella pneumoniae: homologies to other regulatory proteins.. EMBO J 5:441–447
    [Google Scholar]
  24. Engelman D.M., Steitz T.A., Goldman A. 1986; Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins.. Annu Rev Biophys Biophys Chem 15:321–353
    [Google Scholar]
  25. Ensign S.A., Ludden P.W. 1991; Characterization of the CO oxidation/H2evolution system of Rhodospirillum rubrum. Role of a 22-kDa iron-sulfur protein in mediating electron transfer between carbon monoxide dehydrogenase and hydrogenase.. J Biol Chem 266:18395–18403
    [Google Scholar]
  26. Fisher H.M., Bruderer T., Hennecke H. 1988; Essential and non-essential domains in the Bradyrhizobium japonicumNifA protein: identification of indispensable cysteine residues potentially involved in redox activity and/or metal binding.. Nucleic Acids Res 16:2207–2224
    [Google Scholar]
  27. Fox J.D., Kerby R.L., Roberts G.P., Ludden P.W. 1996a; Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrumand the gene encoding the large subunit of the enzyme.. J Bacteriol 178:1515–1524
    [Google Scholar]
  28. Fox J.D., He Y., Shelver D., Roberts G.P., Ludden P.W. 1996b; Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum. . J Bacteriol 178:6200–6208
    [Google Scholar]
  29. Friedrich T., Steinmoüller K., Weiss H. 1995; The protonpumping respiratory complex I of bacteria and mitochondria and its homologue in chloroplasts.. FEBS Lett 367:107–111
    [Google Scholar]
  30. Gennis R.B., Stewart V. 1996; Respiration.. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd edn. pp. 217–261 Neidhardt F.C. others Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Gollin D.J., Mortenson L.E., Robson R.L. 1992; Carboxyl- terminal processing may be essential for production of active NiFe hydrogenase in Azotobacter vinelandii. . FEBS Lett 309:371–375
    [Google Scholar]
  32. Gondal J.A., Anderson W.M. 1985; The molecular morphology of bovine heart mitochondrial NADH → ubiquinone reductase. Native disulfide-linked subunits and rotenone-induced conformational changes.. J Biol Chem 260:12690–12694
    [Google Scholar]
  33. Grosjean H., Fiers W. 1982; Preferential codon usage in prokaryotic genes: optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes.. Gene 18:199–209
    [Google Scholar]
  34. Guénebaut V., Vincentelli R., Mills D., Weiss H., Leonard K.R. 1997; Three-dimensional structure of NADH-dehydrogen- ase from Neurospora crassaby electron microscopy and conical tilt reconstruction.. J Mol Biol 265:409–418
    [Google Scholar]
  35. Hamamoto T., Hashimoto M., Hino M., Kitada M., Seto Y., Kudo T., Horikoshi K. 1994; Characterization of a gene responsible for the Na+/H+antiporter system of alkalophilic Bacillus species strain C-125. . Mol Microbiol 14:939–946
    [Google Scholar]
  36. Happe R.P., Roseboom W., Pierik A.J., Albracht S.P., Bagley K.A. 1997; Biological activation of hydrogen. . Nature 385:126
    [Google Scholar]
  37. Harold F.M., Maloney P.C. 1996; Energy transduction by ion currents.. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd edn. pp. 283–306 Neidhardt F.C. others Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  38. von Heijne G. 1986; A new method for predicting signal cleavage sequences and cleavage sites.. Nucleic Acids Res 14:4683–4690
    [Google Scholar]
  39. von Heijne G. 1992; Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule.. J Mol Biol 225:487–494
    [Google Scholar]
  40. Hidalgo E., Bollinger J.M., Bradley T.M., Walsh C.T., Demple B. 1995; Binuclear [2Fe-2S] clusters in the Escherichia coliSoxR protein and role of the metal centres in transcription.. J Biol Chem 270:20908–20914
    [Google Scholar]
  41. Hopper S., Böck A. 1995; Effector-mediated stimulation of ATPase activity by the σ54-dependent transcriptional activator FHLA from Escherichia coli. . J Bacteriol 177:2798–2803
    [Google Scholar]
  42. Hopper S., Babst M., Schlensog V., Fischer H.-M., Hennecke H., Böck A. 1994; Regulated expression in vitroof genes encoding formate hydrogenlyase components of Escherichia coli.. J Biol Chem 269:19597–19604
    [Google Scholar]
  43. Hopper S., Korsa I., Böck A. 1996; The nucleotide concentration determines the specificity of in vitrotranscription activation by the σ54-dependent activator FHLA.. J Bacteriol 178:199–203
    [Google Scholar]
  44. Kaiser K., Murray N.E., Whittaker P.A. 1995; Construction of representative genomic DNA libraries using phage lambda replacement vectors.. In DNA Cloning: a Practical Approach pp. 37–84 Glover D.M., Hames B.D. Edited by Oxford: IRL Press;
    [Google Scholar]
  45. Kerby R.L., Ludden P.W., Roberts G.P. 1995; Carbon monoxide-dependent growth of Rhodospirillum rubrum. . J Bacteriol 177:2241–2244
    [Google Scholar]
  46. Kessler D., Knappe J. 1996; Anaerobic dissimilation of pyruvate.. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd edn.. pp. 199–205 Neidhardt F.C. others Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  47. Kikuno R., Miyata T. 1985; Sequence homologies among mitochondrial DNA-coded URF2URF4and URF5.. FEBS Lett 189:85–88
    [Google Scholar]
  48. Kohara Y., Akiyama K., Isono K. 1987; The physical map of the whole E. coligenome.. Cell 50:495–508
    [Google Scholar]
  49. Kushner S.R. 1996; mRNA decay. . In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd edn.. pp. 849–860 Neidhardt F.C. others Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  50. MacDonald H., Pope N.R., Cole J.A. 1985; Isolation, characterization and complementation analysis of nirBmutants of Escherichia colideficient only in NADH-dependent nitrite reductase activity. . J Gen Microbiol 131:2771–2782
    [Google Scholar]
  51. Maier T., Binder U., Böck A. 1996; Analysis of the hydAlocus of Escherichia coli: two genes (hydN and hypF) involved in formate and hydrogen metabolism.. Arch Microbiol 165:333–341
    [Google Scholar]
  52. Menon N.K., Robbins J., Peck H.D. JR Chatelus C.Y., Choi E.-S., Przybyla A.E. 1990; Cloning and sequencing of a putative Escherichia coli[NiFe] hydrogenase-1 operon containing six open reading frames.. J Bacteriol 172:1969–1977
    [Google Scholar]
  53. Menon N.K., Robbins J., Wendt J.C., Shanmugam K.T., Przybyla A.E. 1991; Mutational analysis and characterization of the Escherichia coli hyaoperon, which encodes [NiFe] hydrogenase 1.. J Bacteriol 173:4851–1861
    [Google Scholar]
  54. Messing J. 1983; New M13 vectors for cloning.. Methods Enzymol 101:20–78
    [Google Scholar]
  55. Morett E., Segovia L. 1993; The σ54bacterial enhancerbinding protein family: mechanism of action and phylogenetic relationship of their functional domains.. J Bacteriol 175:6067–6074
    [Google Scholar]
  56. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.. Protein Eng 10:1–6
    [Google Scholar]
  57. Patel S.D., Ragan C.I. 1988; Structural studies on mitochondrial NADH dehydrogenase using chemical cross-linking. . Biochem J 256:521–528
    [Google Scholar]
  58. Persson B., Argos P. 1994; Prediction of transmembrane segments in proteins utilizing multiple sequence alignments. . J Mol Biol 237:182–192
    [Google Scholar]
  59. Prickril B.C., Kurtz D.M., LeGall J., Voordouw G. 1991; Cloning and sequencing of the gene for rubrerythrin from Desulfovibrio vulgaris(Hildenborough). . Biochemistry 30:11118–11123
    [Google Scholar]
  60. Ragan C.I., Galante Y.M., Hatefi Y. 1982; Purification of three iron-sulfur proteins from the iron-protein fragment of mitochondrial NADH-ubiquinone oxidoreductase.. Biochemistry 21:2518–2524
    [Google Scholar]
  61. Rossmann R., Sawers G., Böck A. 1991; Mechanism of regulation of the formate-hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon.. Mol Microbiol 5:2807–2814
    [Google Scholar]
  62. Rossmann R., Sauter M., Lottspeich F., Böck A. 1994; Maturation of the large subunit (HYCE) of Escherichia colihydrogenase 3 requires nickel incorporation followed by C- terminal processing at Arg537.. Eur J Biochem 220:377–384
    [Google Scholar]
  63. Rossmann R., Maier T., Lottspeich F., Böck A. 1995; Characterization of a protease from Escherichia coliinvolved in hydrogenase maturation.. Eur J Biochem 227:545–550
    [Google Scholar]
  64. Rouault T.A., Klausner R.D. 1996; Iron-sulfur clusters as biosensors of oxidants and iron. . Trends Biochem Sci 21:174–177
    [Google Scholar]
  65. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  66. Sandford R.A., Urbance J.W., Tiedje J.M. 1996; Anaerobic oxidation of formate to H2supports growth in strain FOX1, a novel sulfate reducer. General Meeting of the American Society for Microbiology, New Orleans, abstract. 0–66
    [Google Scholar]
  67. Sauter M., Böhm R., Böck A. 1992; Mutational analysis of the operon (hyc)determining hydrogenase 3 formation in Escherichia coli.. Mol Microbiol 6:1523–1532
    [Google Scholar]
  68. Sawers G. 1994; The hydrogenases and formate dehydrogenases of Escherichia coli. . Antonie Leeuwenhoek 66:57–88
    [Google Scholar]
  69. Sawers G., Böck A. 1989; Novel transcriptional control of the pyruvate formate-lyase gene: upstream regulatory sequences and multiple promoters regulate anaerobic expression. . J Bacteriol 171:2485–2498
    [Google Scholar]
  70. Sawers R.G., Boxer D.H. 1986; Purification and properties of membrane-bound hydrogenase isoenzyme 1 from anaerobically grown Escherichia coliK-12.. Eur J Biochem 156:265–275
    [Google Scholar]
  71. Sawers R.G., Ballantine S.P., Boxer D.H. 1985; Differential expression of hydrogenase isoenzymes in Escherichia coliK-12: evidence for a third isoenzyme. . J Bacteriol 164:1324–1331
    [Google Scholar]
  72. Sawers R.G., Jamieson D.J., Higgins S.F., Boxer D.H. 1986; Characterization and physiological roles of membrane-bound hydrogenase isoenzymes from Salmonella typhimurium. . J Bacteriol 168:398–404
    [Google Scholar]
  73. Schlensog V., Böck A. 1990; Identification and sequence analysis of the gene encoding the transcriptional activator of the formate hydrogenlyase system of Escherichia coli. . Mol Microbiol 4:1319–1327
    [Google Scholar]
  74. Schlensog V., Birkmann A., Böck A. 1989; Mutations in transwhich affect the anaerobic expression of a formate dehydrogenase (fdhF) structural gene.. Arch Microbiol 152:83–89
    [Google Scholar]
  75. Schlensog V., Lutz S., Böck A. 1994; Purification and DNA- binding properties of FHLA, the transcriptional activator of the formate hydrogenlyase system from Escherichia coli. . J Biol Chem 269:19590–19596
    [Google Scholar]
  76. Shine J., Dalgarno L. 1974; The 3ʹ-terminal sequence of Escherichia coli16S ribosomal RNA: complementarity to nonsense triplets and ribosome-binding sites.. Proc Natl Acad Sci USA 711342–1346
    [Google Scholar]
  77. Shingler V. 1996; Signal sensing by σ54-dependent regulators: derepression as a control mechanism.. Mol Microbiol 19:409–416
    [Google Scholar]
  78. Staden R. 1990; Finding protein coding regions in genomic sequences.. Methods Enzymol 183:163–180
    [Google Scholar]
  79. Stephenson M., Stickland L.H. 1932; Hydrogenlyases. Bacterial enzymes liberating molecular hydrogen. . Biochem J 26:712–724
    [Google Scholar]
  80. Suppmann B., Sawers G. 1994; Isolation and characterization of hyophosphite-resistant mutants ofEscherichia coli: identification of the FocA protein, encoded by the pfloperon, as a putative formate transporter. . Mol Microbiol 11:965–982
    [Google Scholar]
  81. Thauer R.K., Jungemann K., Decker K. 1977; Energy conservation in chemotrophic anaerobic bacteria. . Bacteriol Rev 41:100–180
    [Google Scholar]
  82. Thauer R.K., Hedderich R., Fischer R. 1993; Reactions and enzymes involved in methanogenesis from CO2and H2.. In Methanogenesis pp. 209–252 Ferry J.G. Edited by New York: Chapman & Hall;
    [Google Scholar]
  83. Thöny B., Hennecke H. 1989; The −24/ −12 promoter comes of age. . FEMS Microbiol Rev 63:341–358
    [Google Scholar]
  84. Videira A., Azevedo J.E. 1994; 2 nuclear-coded subunits of mitrochondrial complex I are similar to different domains of a bacterial formate hydrogenlyase subunit.. Int J Biochem 26:1391–1393
    [Google Scholar]
  85. Vignais P.M., Toussaint B. 1994; Molecular biology of membrane-bound H2uptake hydrogenases.. Arch Microbiol 161:1–10
    [Google Scholar]
  86. Volbeda A., Charon M.-H., Piras C., Hatchikian E.C., Frey M., Fontecilla-Camps J.C. 1995; Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas.. Nature 373:580–587
    [Google Scholar]
  87. Volbeda A., Garcin E., Piras C., de Lacey A.L., Fernandez V.M., Hatchikian E.C., Frey M., Fontecilla-Camps J.C. 1996; Structure of the [NiFe] hydrogenase active site: evidence for biologically uncommon Fe ligands.. J Am Chem Soc 118:12989–12996
    [Google Scholar]
  88. Walker J.E. 1992; The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains.. Q Rev Biophys 25:253–324
    [Google Scholar]
  89. Weiss H., Friedrich T., Hofhaus G., Preis D. 1991; The respiratory-chain NADH dehydrogenase (complex I) of mitochondria.. Eur J Biochem 197:563–576
    [Google Scholar]
  90. Yamaguchi M., Hatefi Y. 1993; Mitochondrial NADH:ubiquinone oxidoreductase (complex I) : proximity of the subunits of the flavoprotein and the iron-sulfur protein subcomplexes.. Biochemistry 32:1935–1939
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-11-3633
Loading
/content/journal/micro/10.1099/00221287-143-11-3633
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error