1887

Abstract

Alginate production in and the associated mucoid phenotype of isolates from cystic fibrosis patients are under the control of the cluster. This group of genes encodes AlgU, the equivalent of the extreme heat shock σ factor σ in Gram-negative bacteria, the AlgU-cognate anti-σ factor MucA, the periplasmic protein MucB and a serine protease homologue, MucD. While or act as negative regulators of AlgU, the function of is not known. In this study the role of in physiology and alginate production has been addressed. Insertional inactivation of in the wild-type strain PAO1 did not cause any overt effects on alginate synthesis. However, it affected growth of under conditions of combined elevated temperature and increased ionic strength or osmolarity. inactivation of in or mutant backgrounds resulted in a mucoid phenotype when the cells were grown under combined stress conditions of elevated temperature and osmolarity. Each of the stress factors tested separately did not cause comparable effects. The combined stress factors were not sufficient to cause phenotypically appreciable enhancement of alginate production in or mutants unless was also inactivated. These findings support a negative regulatory role of in alginate production by indicate additive effects of genes in the regulation of mucoidy in this organism and suggest that multiple stress signals and recognition systems participate in the regulation of -dependent functions.

Keyword(s): anti-sigma , mucoidyle and Sigma factors
Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-11-3473
1997-11-01
2021-05-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/11/mic-143-11-3473.html?itemId=/content/journal/micro/10.1099/00221287-143-11-3473&mimeType=html&fmt=ahah

References

  1. Anastassiou E.D., Mintzas A.C., Kounavis C., Dimitraco-poulos G. 1987; Alginate production by clinical nonmucoid Pseudomonas aeruginosa.. J Clin Microbiol 25:656–659
    [Google Scholar]
  2. Boucher J.C., Martinez-Salazar J.M., Schurr M.J., Mudd M.H., Yu H., Deretic V. 1996; Two distinct loci affecting conversion to mucoidy in Pseudomonas aeruginosa in cystic fibrosis encode homologs of the serine protease HtrA.. J Bacteriol 178:511–523
    [Google Scholar]
  3. Chi E., Bartlett D.H. 1995; An rpo-like locus controls outer membrane protein synthesis and growth at cold temperature and high pressures in the deep-sea bacterium Photobacterium sp. strain SS9.. Mol Microbiol 17:713–726
    [Google Scholar]
  4. Coyne M.J., Russell K.S., Coyle C.L., Goldberg J.B. 1994; The Pseudomonas aeruginosa algC gene encodes phosphogluco- mutase, required for the synthesis of a complete lipopoly- saccharide core.. J Bacteriol 176:3500–3507
    [Google Scholar]
  5. De Las Penas A., Connolly L., Gross C.A. 1997; The σE-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of σE.. Mol Microbiol 24:373–385
    [Google Scholar]
  6. Deretic V., Govan J.R., Konyecsni W.M., Martin D.W. 1990; Mucoid Pseudomonas aeruginosa in cystic fibrosis: mutations in the muc loci affect transcription of the algR and algD genes in response to environmental stimuli.. Mol Microbiol 4:189–196
    [Google Scholar]
  7. Deretic V., Schurr M.J., Boucher J.C., Martin D.W. 1994; Conversion of Pseudomonas aeruginosa to mucoidy in cystic fibrosis: environmental stress and regulation of bacterial virulence by alternative sigma factors.. J Bacteriol 176:2773–2780
    [Google Scholar]
  8. Deretic V., Schurr M.J., Yu H. 1995; Pseudomonas aeruginosa, mucoidy and chronic infection phenotype in cystic fibrosis.. Trends Microbiol 3:351–356
    [Google Scholar]
  9. DeVries C.A., Ohman D.E. 1994; Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternate sigma factor, and shows evidence for autoregulation.. J Bacteriol 176:6677–6687
    [Google Scholar]
  10. Elzer P.H., Phillips R.W., Robertson G.T., Roop R.M. III 1996; The HtrA stress response protease contributes to resistance of Brucella abortus to killing by murine phagocytes.. Infect Immun 64:4838–4841
    [Google Scholar]
  11. Erickson J.W., Gross C.A. 1989; Identification of the sigma subunit of Escherichia coli polymerase: a second sigma factor involved in high-temperature gene expression.. Genes Dev 3:1462–1471
    [Google Scholar]
  12. Fyfe J.A.M., Govan J.R.W. 1980; Alginate synthesis in mucoid Pseudomonas aeruginosa: a chromosomal locus involved in control.. J Gen Microbiol 119:443–450
    [Google Scholar]
  13. Goldberg J.B., Gorman W.L., Flynn J., Ohman D.E. 1993; Amutation in algN permits trans activation of alginate production by algT in Pseudomonas species.. J Bacteriol 175:1303–1308
    [Google Scholar]
  14. Govan J.R.W., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkhol- deria cepacia.. Microbiol Rev 60:539–574
    [Google Scholar]
  15. Johnson K., Charles I., Dougan G., Pickard D., O’Gaora P., Costa G., Ali T., Miller I., Hormaeche C. 1991; The role of a stress-response protein in Salmonella typhimurium virulence.. Mol Microbiol 5:401–407
    [Google Scholar]
  16. Knutson C.A., Jeanes A. 1976; A new modification of the carbazole reaction: application to heteropolysaccharides.. Anal Biochem 24:470–481
    [Google Scholar]
  17. Lam J., Chan R., Lam K., Costerton J.W. 1980; Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis.. Infect Immun 28:546–556
    [Google Scholar]
  18. Lipinska B., Sharma S., Georgopoulos C. 1988; Sequence analysis and regulation of the htrA gene of Escherichia coli: a σ32- independent mechanism of heat-inducible transcription.. Nucleic Acids Res 16:10053–10067
    [Google Scholar]
  19. Lonetto M.A., Brown K.L., Rudd K.E., Buttner M.J. 1994; Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase σ factors involved in the regulation of extracytoplasmic functions.. Proc Natl Acad Sci USA 86:7573–7577
    [Google Scholar]
  20. Martin D.W., Holloway B.W., Deretic V. 1993a; Character-ization of a locus determining the mucoid status of Pseudomonas aeruginosa: AlgU shows sequence similarities with a Bacillus sigma factor.. J Bacteriol 175:1153–1164
    [Google Scholar]
  21. Martin D.W., Schurr M.J., Mudd M.H., Deretic V. 1993b; Differentiation of Pseudomonas aeruginosa into the alginate- producing form: inactivation of mucB causes conversion to mucoidy.. Mol Microbiol 9:497–506
    [Google Scholar]
  22. Martin D.W., Schurr M.J., Mudd M.H., Govan J.R.W., Holloway B.W., Deretic V. 1993c; Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients.. Proc Natl Acad Sci USA 90:8377–8381
    [Google Scholar]
  23. Martin D.W., Schurr M.J., Yu H., Deretic V. 1994; Analysis of promoters controlled by the putative sigma factor AlgU regulating conversion to mucoidy in Pseudomonas aeruginosa: relationship to stress response.. J Bacteriol 176:6688–6696
    [Google Scholar]
  24. May T.B., Chakrabarty A.M. 1994; Pseudomonas aeruginosa: genes and enzymes of alginate synthesis.. Trends Microbiol 2:151–157
    [Google Scholar]
  25. Mecsas J., Rouviere P.E., Erickson J.W., Donohue T.J., Gross C.A. 1993; The activity of σE, an Escherichia coli heat-inducible σ-factor, is modulated by expression of outer membrane proteins.. Genes Dev 7:2618–2628
    [Google Scholar]
  26. Missiakas D., Mayer M.P., Lemaire M., Georgopoulos C., Raina S. 1997; Modulation of the Escherichia coli aσE (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins.. Mol Microbiol 24:355–371
    [Google Scholar]
  27. Mohr C.D., Deretic V. 1990; Gene-scrambling mutagenesis: generation and analysis of insertional mutations in the alginate regulatory region of Pseudomonas aeruginosa.. J Bacteriol 172:6252–6260
    [Google Scholar]
  28. Pier G.B., DesJardins D., Aquilhar R., Barnard M., Speert D. 1986; Polysaccharide surface antigens expressed by nonmucoid isolates of Pseudomonas aeruginosa from cystic fibrosis patients.. J Clin Microbiol 24:189–196
    [Google Scholar]
  29. Raina S., Missiakas D., Georgopoulos G. 1995; The rpoE gene encoding the σE24) heat shock sigma factor of Escherichia coli.. EMBO J 14:1043–1055
    [Google Scholar]
  30. Rouviére P.E., De Las Penas A., Mecsas J., Lu GZ., Rudd K.E., Gross C.A. 1995; rpoE, the gene encoding the second heat- shock sigma factor, σE, in Escherichia coli.. EMBO J 14:1032–1042
    [Google Scholar]
  31. Schurr M.J., Martin D.W., Mudd M.H., Deretic V. 1994; Gene cluster controlling conversion to alginate-overproducing phenotype in Pseudomonas aeruginosa: functional analysis in a heterologous host and role in the instability of mucoidy.. J Bacteriol 176:3375–3382
    [Google Scholar]
  32. Schurr M.J., Yu H., Boucher J.C., Hibler N.S., Deretic V. 1995; Multiple promoters and induction by heat shock of the gene encoding the alternative sigma factor AlgU (σE) which controls mucoidy in cystic fibrosis isolates of Pseudomonas aeruginosa.. J Bacteriol 177:5670–5679
    [Google Scholar]
  33. Schurr M.J., Yu H., Martinez-Salazar J.M., Boucher J.C., Deretic V. 1996; Control of AlgU, a member of the σE-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in Cystic Fibrosis.. J Bacteriol 178:4997–5004
    [Google Scholar]
  34. Speert D.P. 1994; Pseudomonas aeruginosa infections in patients with cystic fibrosis.. In Pseudomonas aeruginosa Infections and Treatment pp. 183–236 Baltch A.L., Smith R.P. Edited by New York: Marcel Dekker, Inc;
    [Google Scholar]
  35. Strauch K., Beckwith J. 1988; An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins.. Proc Natl Acad Sci USA 85:1576–1580
    [Google Scholar]
  36. Wozniak D.J., Ohman D.E. 1994; Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB and algD reveals a hierarchy of alginate gene expression which is modulated by algT.. J Bacteriol 176:6007–6014
    [Google Scholar]
  37. Wu J., Weiss B. 1991; Two divergently transcribed genes, soxR and soxS, control a superoxide response regulon of Escherichia coli.. J Bacteriol 173:2864–2871
    [Google Scholar]
  38. Yu H., Schurr M.J., Boucher J.C., Martinez-Salazar J.M., Martin D.W., Deretic V. 1996; Molecular mechanism of conversion to mucoidy in Pseudomonas aeruginosa. . In Pseudomonas pp. 384–397 Silver S., Nakazowa T., Haas D. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  39. Yu H., Schurr M.J., Deretic V. 1995; Functional equivalence of Escherichia coli σE and Pseudomonas aeruginosa AlgU: E. coli rpoE restores mucoidy and reduces sensitivity to reactive oxygen intermediates in algU mutants of P. aeruginosa.. J Bacteriol 177:3259–3268
    [Google Scholar]
  40. Xie Z.-D., Hershberger C.D., Shankar S., Ye R.W., Chakrabaarty A.M. 1996; Sigma factor-anti-sigma factor interaction in alginate synthesis: inhibition of AlgT by MucA.. J Bacteriol 178:4990–4996
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-11-3473
Loading
/content/journal/micro/10.1099/00221287-143-11-3473
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error