1887

Abstract

The 200 kb region of the chromosome spanning from 255 to 275° on the genetic map was sequenced. The strategy applied, based on use of yeast artificial chromosomes and multiplex Long Accurate PCR, proved to be very efficient for sequencing a large bacterial chromosome area. A total of 193 genes of this part of the chromosome was classified by level of knowledge and biological category of their functions. Five levels of gene function understanding are defined. These are: (i) experimental evidence is available of gene product or biological function; (ii) strong homology exists for the putative gene product with proteins from other organisms; (Hi) some indication of the function can be derived from homologies with known proteins; (iv) the gene product can be clustered with hypothetical proteins; (v) no indication on the gene function exists. The percentage of detected genes in each category was: 20, 28, 20, 15 and 17, respectively. In the sequenced region, a high percentage of genes are implicated in transport and metabolic linking of glycolysis and the citric acid cycle. A functional connection of several genes from this region and the genes close to 140° in the chromosome was also observed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-11-3431
1997-11-01
2021-04-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/11/mic-143-11-3431.html?itemId=/content/journal/micro/10.1099/00221287-143-11-3431&mimeType=html&fmt=ahah

References

  1. Abe A., Koide H., Kohno T., Watabe K. 1995; A Bacillus subtilis spore coat polypeptide gene, cotS.. Microbiology 141:1433–1442
    [Google Scholar]
  2. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990; Basic local alignment search tool.. J Mol Biol 215:403–410
    [Google Scholar]
  3. Anand R., Villasante A., Tyler-Smith C. 1989; Construction of yeast artificial chromosome libraries with large inserts using fractionation by pulsed-field electrophoresis.. Nucleic Acids Res 173425–3433
    [Google Scholar]
  4. Azevedo V., Alvarez E., Zumstein E., Damiani G., Sgaramella V., Ehrlich S.D., Serror P. 1993; An ordered collection of Bacillus subtilis DNA segments cloned in yeast artificial chromosomes.. Proc Natl Acad Sci USA 906047–6051
    [Google Scholar]
  5. Bolotin A., Khazak V., Stoynova N., Ratmanova K., Yomantas Y., Kozlov Y. 1995; Identical amino acid sequence of the aroA(G) gene products of Bacillus subtilis 168 and B. subtilis Marburg strain.. Microbiology 141:2219–2222
    [Google Scholar]
  6. Bolotin A., Sorokin A., Ehrlich S.D. 1996; Mapping of the 150 kb spoIIIC-pheA region of the Bacillus subtilis chromosome using Long Accurate PCR and three yeast artificial chromosomes.. Microbiology 142:3017–3020
    [Google Scholar]
  7. Bower S., Perkins J., Yocum R.R., Howitt C.L., Rahaim P., Pero J. 1996; Cloning, sequencing, and characterization of the Bacillus subtilis biotin biosynthetic operon.. J Bacteriol 178:4122–4130
    [Google Scholar]
  8. Bruand C., Ehrlich S.D. 1995; The Bacillus subtilis dnaI gene is part of the dnaB operon.. Microbiology 141:1199–1200
    [Google Scholar]
  9. Capuano V., Galleron N., Pujic P., Sorokin A., Ehrlich S. D. 1996; Organization of the Bacillus subtilis 168 chromosome between kdg and the attachment site of the SPβ prophage: use of Long Accurate PCR and yeast artificial chromosomes for sequencing.. Microbiology 142:3005–3015
    [Google Scholar]
  10. Connors M.J., Mason J.M., Setlow P. 1986; Cloning and nucleotide sequencing of genes for three small acid-soluble proteins from Bacillus subtilis spores.. J Bacteriol 166:417–425
    [Google Scholar]
  11. Daniel R.A., Errington A. 1993; DNA sequence of the murE-murD region of Bacillus subtilis 168.. J Gen Microbiol 139:361–370
    [Google Scholar]
  12. Dear S., Staden R. 1991; A sequence assembly and editing program for efficient management of large projects.. Nucleic Acids Res 19:3907–3911
    [Google Scholar]
  13. Dower W.J., Miller J.F., Ragsdale C.W. 1988; High-efficiency transformation of E. coli by high-voltage electroporation.. Nucleic Acids Res 16:6127–6145
    [Google Scholar]
  14. Driscoll J.R., Taber H.W. 1992; Sequence organization and regulation of the Bacillus subtilis menBE operon.. J Bacteriol 174:5063–5071
    [Google Scholar]
  15. Errington J. 1986; A general method for fusion of the Escherichia coli lacZ gene to chromosomal genes in Bacillus subtilis.. J Gen Microbiol 132:2953–2961
    [Google Scholar]
  16. Fitch W.M. 1970; Distinguishing homologous from analogous proteins.. Syst Zool 270:445–446
    [Google Scholar]
  17. Fleischmann R.D., Adams M.D., White O. 37 other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd.. Science 269:496–512
    [Google Scholar]
  18. Fraser C.M., Gocayne J.D., White O. 26 other authors 1995; The minimal gene complement of Mycoplasma genitalium.. Science 270:397–403
    [Google Scholar]
  19. Green C.J., Stewart G.C., Hollis M.A., Vold B.S., Bott K.F. 1985; Nucleotide sequence of the Bacillus subtilis ribosomal RNA operon, rrnB.. Gene 37:261–266
    [Google Scholar]
  20. Grundy F.J., Henkin T.M. 1990; Cloning and analysis of the Bacillus subtilis rpsD gene, encoding ribosomal protein S4.. J Bacteriol 172:6372–6379
    [Google Scholar]
  21. Grundy F.J., Waters D.A., Allen H.G., Henkin T.M. 1993a; Regulation of the Bacillus subtilis acetate kinase gene by CcpA.. J Bacteriol 175:7348–7355
    [Google Scholar]
  22. Grundy F.J., Waters D.A., Takova T.Y., Henkin T.M. 1993b; Identification of genes involved in utilization of acetate and acetoin in Bacillus subtilis.. Mol Microbiol 10:259–271
    [Google Scholar]
  23. Henkin T.M., Grundy F.J., Nicholson W.L., Chambliss G.H. 1991; Catabolite repression of α-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lad and galR repressors.. Mol Microbiol 5:575–584
    [Google Scholar]
  24. Henkin T.M., Glass B.L., Grundy F.J. 1992; Analysis of the Bacillus subtilis tyrS gene: conservation of a regulatory sequence in multiple tRNA synthetase genes.. J Bacteriol 174:1299–1306
    [Google Scholar]
  25. Hulett F.M., Lee J., Shi L., Sun G., Chesnut R., Sharkova E., Duggan M.F., Kapp N. 1994; Sequential action of two- component genetic switches regulates the PHO regulon in Bacillus subtilis.. J Bacteriol 176:1348–1358
    [Google Scholar]
  26. Jin S., Sonenshein A.L. 1994; Identification of two distinct Bacillus subtilis citrate synthase genes.. J Bacteriol 178:4669–4679
    [Google Scholar]
  27. Jin S., Sonenshein A.L. 1996; Characterization of the major citrate synthase of Bacillus subtilis.. J Bacteriol 176:3658–3660
    [Google Scholar]
  28. Jin S., de Jesus-Berrios M., Sonenshein A.L. 1996; A Bacillus subtilis malate dehydrogenase gene.. J Bacteriol 178:560–563
    [Google Scholar]
  29. Kappes R.M., Kempf B., Bremer E. 1996; Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD.. J Bacteriol 178:5071–5079
    [Google Scholar]
  30. Kiel J.A., Boels J.M., Beldman G., Venema G. 1994; Glycogen in Bacillus subtilis: molecular characterization of an operon encoding enzymes involved in glycogen biosynthesis and degradation.. Mol Microbiol 11:203–218
    [Google Scholar]
  31. Kunst F., Vassaroti A., Danchin A. 1995; Organisation of the European Bacillus subtilis genome sequencing project.. Microbiology 141:249–255
    [Google Scholar]
  32. Lazarevic V., Maüel C, Soldo B., Freymond P.-P., Margot P., Karamata D. 1996; Sequence analysis of the 308° to 311° segment of the Bacillus subtilis 168 chromosome, a region devoted to cell wall metabolism, containing non-coding grey holes which reveal chromosomal rearrangements.. Microbiology 141:329–335
    [Google Scholar]
  33. Mizuno M., Mazuda S., Takemaru K., Hosono S., Sato T., Takeuchi M., Kobayashi Y. 1996; Systematic sequencing of the 283 kb 210°-232° region of the Bacillus subtilis genome containing the skin element and many sporulation genes.. Microbiology 142:3103–3111
    [Google Scholar]
  34. Moszer I., Glaser P., Danchin A. 1995; SubtiList: a relational database for the Bacillus subtilis genome.. Microbiology 141:261–268
    [Google Scholar]
  35. Mountain A., McChesney J., Smith M.C.M., Baumberg S. 1986; Gene sequence encoding early enzymes of arginine synthesis within a cluster in Bacillus subtilis, as revealed by cloning in Escherichia coli.. J Bacteriol 165:1026–1028
    [Google Scholar]
  36. Ogasawara N., Moriya S., Mazza P. G., Yoshikawa H. 1986; Nucleotide sequence and organization of dnaB gene and neighboring genes on the Bacillus subtilis chromosome.. Nucleic Acids Res 14:9989–9999
    [Google Scholar]
  37. Palaniappan C., Taber H., Meganathan R. 1994; Biosynthesis of O-succinylbenzoic acid in Bacillus subtilis: identification of menD mutants and evidence against the involvement of the α-ketoglutarate dehydrogenase complex.. J Bacteriol 176:2648–2653
    [Google Scholar]
  38. Pearson W.R., Lipman D.J. 1988; Improved tools for biological sequence comparison.. Proc Natl Acad Sci USA 852444–2448
    [Google Scholar]
  39. Perego M., Ferrari E., Bassi M.T., Galizzi A., Mazza P. 1987; Molecular cloning of Bacillus subtilis genes involved in DNA metabolism.. Mol Gen Genet 209:8–14
    [Google Scholar]
  40. Riley M. 1993; Functions of gene products of Escherichia coli.. Annu Rev Microbiol 32:862–952
    [Google Scholar]
  41. Rowland B., Taber H. 1996; Duplicate isochorismate synthase genes of Bacillus subtilis: regulation and involvement in the biosyntheses of menaquinone and 2,3-dihydroxybenzoate.. J Bacteriol 178:854–861
    [Google Scholar]
  42. Rowland B., Hill K., Miller P., Driscoll J., Taber H. 1995; Structural organization of a Bacillus subtilis operon encoding menaquinone biosynthetic enzymes.. Gene 167:105–109
    [Google Scholar]
  43. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  44. Seki T., Yoshikawa H., Takahashi H., Saito H. 1988; Nucleotide sequence of the Bacillus subtilis phoR gene.. J Bacteriol 170:5935–5938
    [Google Scholar]
  45. Slack F.J., Serror P., Joyce E., Sonenshein A.L. 1995; A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon.. Mol Microbiol 15:689–702
    [Google Scholar]
  46. Sorokin A., Zumstein E., Azevedo V., Ehrlich S.D., Serror P. 1993; The organization of the Bacillus subtilis 168 chromosome region between the spoVA and serA genetic loci, based on sequence data.. Mol Microbiol 10:385–395
    [Google Scholar]
  47. Sorokin A., Serror P., Pujic P., Azevedo V., Ehrlich S.D. 1995; The Bacillus subtilis chromosome region encoding homologs of the Escherichia coli mssA and rpsA gene products.. Microbiology 141:311–319
    [Google Scholar]
  48. Sorokin A., Azevedo V., Zumstein E., Galleron N., Ehrlich S. D., Serror P. 1996a; Sequence analysis of the Bacillus subtilis chromosome region between the serA and kdg loci cloned in a yeast artificial chromosome.. Microbiology 142:2005–2016
    [Google Scholar]
  49. Sorokin A., Lapidus L., Capuano V., Galleron N., Pujic P., Ehrlich S.D. 1996b; A new approach using Multiplex Long Accurate PCR and yeast artificial chromosomes for bacterial chromosome mapping and sequencing.. Genome Res 6:448–453
    [Google Scholar]
  50. Tabor S., Richardson C.C. 1995; A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides.. Proc Natl Acad Sci USA 926339–6343
    [Google Scholar]
  51. Tatusov R.L., Mushegian A.R., Bork P., Brown N.P., Hayes W.S., Borodovsky M., Rudd K.E., Koonin E.V. 1996; Metabolism and evolution of Haemophilus influenzae deduced from a whole-genome comparision with Escherichia coli.. Curr Biol 6:279–291
    [Google Scholar]
  52. Tovar-Rojo F., Setlow P. 1991; Effects of mutant small, acid-soluble spore proteins from Bacillus subtilis on DNA in vivo and in vitro.. J Bacteriol 173:4827–4835
    [Google Scholar]
  53. Vander Horn P.B., Zahler S.A. 1992; Cloning and nucleotide sequence of the leucyl-tRNA synthetase gene of Bacillus subtilis.. J Bacteriol 174:3928–3935
    [Google Scholar]
  54. Wabiko H., Ochi K., Nguyen D.M., Allen E.R., Freeze E. 1988; Genetic mapping and physiological consequences of metE mutations of Bacillus subtilis.. J Bacteriol 170:2705–2710
    [Google Scholar]
  55. Wu L.J., Errington J. 1994; Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division.. Science 264:572–575
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-11-3431
Loading
/content/journal/micro/10.1099/00221287-143-11-3431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error