1887

Abstract

The antituberculosis drug pyrazinamide (PZA) needs to be converted into pyrazinoic acid (POA) by the bacterial pyrazinamidase (PZase) in order to show bactericidal activity against is naturally resistant to PZA. To investigate whether this natural resistance to PZA is due to inability of the PZase to convert PZA to bactericidal POA, the PZase gene () was cloned by using the gene as a probe. Sequence analysis showed that the gene is 561 bp long, encoding a protein with a predicted size of about 19·8 kDa; but Western blotting showed that the PZase migrated as a 24 kDa band when expressed in BCG and Sequence comparison revealed that PZase has 67·7% and 32·8% amino acid identity with the corresponding enzymes from and , respectively. Southern blot analysis with the gene as a probe showed that and have close homologues, whereas and did not give significant hybridization signals. Transformation with the gene conferred PZA susceptibility to PZA-resistant complex organisms, indicating that the nonsusceptibility of to PZA is not due to an ineffective PZase enzyme, but appears to be related to other factors such as transport of POA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-10-3367
1997-10-01
2021-07-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/10/mic-143-10-3367.html?itemId=/content/journal/micro/10.1099/00221287-143-10-3367&mimeType=html&fmt=ahah

References

  1. Bonicke R., Lisboa B.P. 1959; Typendifferenzierung der tuberkulosebakterien mit hilfe des nikotinamidasetests. Tuber-Kuloseartzt 13:375–377
    [Google Scholar]
  2. Butler W.R., O'Connor S.P., Yakrus M.A. 8 other authors 1993; Mycobacterium celatum sp. Int J Syst Bacteriol 43:539–548 nov
    [Google Scholar]
  3. Cynamon M.H., Gimi R., Gyenes F. 7 other authors 1995; Pyrazinoic acid esters with broad spectrum in vitro antimycobacterial activity. J Med Chem 38:3902–3907
    [Google Scholar]
  4. Ellner J.J., Goldberger M.J., Parenti D.M. 1991; Mycobacterium avium infection and aids: A therapeutic dilemma in rapid evolution. J Infect Dis 163:1326–1335
    [Google Scholar]
  5. Garbe T., Barathi J., Barnini S., Zhang Y., Abou-Zeid C., Tang D., Mukherjee R., Young D.B. 1994; Transformation of mycobacterial species using hygromycin resistance as selectable marker. Microbiology 140:133–138
    [Google Scholar]
  6. Heifets L.B., Iseman M.D., Crowle A.J., Lindholm-Levy P.J. 1986; Pyrazinamide is not active against mycobacterium avium complex. Am Rev Respir Dis 134:1287–1288
    [Google Scholar]
  7. Jarlier V., Nikaido H. 1994; Mycobacterial cell wall: Structure and role in natural resistance to antibiotics. FEMS Microbiol Lett 123:11–18
    [Google Scholar]
  8. Jerlstrom P.G., Bezjak D.A., Jennings M.P., Beacham I.R. 1989; Structure and expression in escherichia coli k-12 of the l- asparaginase i-encoding ansa gene and its flanking regions. Gene 78:37–46
    [Google Scholar]
  9. Koneman E.W., Allen S.D., Dowell V.R., Janda W.M., Sommers H.M., Winn W.C. 1988; Mycobacteria. In Color Atlas and Textbook of Diagnostic Microbiology, 3Rd Edn pp. 535–572 Philadelphia: J. B. Lippencott Co;
    [Google Scholar]
  10. Konno K., Feldman F.M., McDermott W. 1967; Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis 95:461–469
    [Google Scholar]
  11. McClatchy J.K., Tsang A.Y., Cernich M.S. 1981; Use of pyrazinamidase activity in Mycobacterium tuberculosis as a rapid method for determination of pyrazinamide susceptibility. Anti-Microb Agents Chemother 20:556–557
    [Google Scholar]
  12. McDermott W., Tompsett R. 1954; Activation of pyrazinamide and nicotinamide in acidic environment in vitro. Am Rev Tuberc 70:748–754
    [Google Scholar]
  13. Miller M., Thibert L., Desjardins F., Siddiqi S., Dascal A. 1995; Testing of susceptibility of mycobacterium tuberculosis to pyrazinamide: Comparison of bactec method with pyrazinamidase assay. J Clin Microbiol 33:2468–2470
    [Google Scholar]
  14. Panyim S., Chalkley R. 1971; The molecular weights of vertebrate histones exploiting a modified sodium dodecyl sulfate electrophoretic method. J Biol Chem 246:7557–7660
    [Google Scholar]
  15. Saiki R.K., Gelfand D.H., Stoffel S., Scharf S.J., Higuchi R., Horn G.T., Mullis K.B., & Erlich H.A. 1988; Primer-directed enzymatic amplification of dna with a thermostable dna polymerase. Science 239:487–491
    [Google Scholar]
  16. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  17. Scorpio A., Zhang Y. 1996; Mutations in pnca, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 2:662–667
    [Google Scholar]
  18. Scorpio A., Collins D.M., Whipple D., Cave D., Bates J., Zhang Y. 1997; Rapid differentiation of bovine and human tubercle bacilli based on a characteristic mutation in the bovine pyrazinamidase gene. J Clin Microbiol 32:106–110
    [Google Scholar]
  19. Scorpio A., Lindholm-Levy P., Heifets L., Gilman R., Siddiqi S., Cynamon M., Zhang Y. 1997; Characterization of pnca mutations in pyrazinamide-resistant Mycobacterium Tuberculosis . Antimicrob Agents Chemother 41:540–543
    [Google Scholar]
  20. Sreevatsan S., Pan X., Zhang Y., Kreiswirth B., Musser J.M. 1997; Mutations associated with pyrazinamide resistance in pnca of mycobacterium tuberculosis complex organisms. Antimicrob Agents Chemother 41:636–640
    [Google Scholar]
  21. Takiff H.E., Cimino M., Musso M.C., Weisbrod T., Martinez R., Delgado M.B., Salazar L., Bloom B.R., Jacobs W.R. Jr 1996; Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in mycobacterium smegmatis. Proc Natl Acad Sci USA 93:362–366
    [Google Scholar]
  22. Tarnok I., Rohrscheidt E. 1976; Biochemical background of some enzymatic tests used for the differentiation of mycobacteria. Tubercle 57:145–150
    [Google Scholar]
  23. Trivedi S.S., Desai S.G. 1987; Pyrazinamidase activity of mycobacterium tuberculosis -a test of sensitivity to pyrazinamide. Tubercle 68:221–224
    [Google Scholar]
  24. Wayne L.G. 1974; Simple pyrazinamidase and urease tests for routine identification of mycobacteria. Am Rev Respir Dis 109:147–151
    [Google Scholar]
  25. Yamamoto S., Toida I., Watanabe N., Ura T. 1995; In vitro antimycobacterial activities of pyrazinamide analogs. Antimicrob Agents Chemother 39:2088–2091
    [Google Scholar]
  26. Zhang Y., Lathigra R., Garbe T., Catty D., Young D. 1991
  27. Mol Microbiol 5:381–391
    [Google Scholar]
  28. Zhang Y., Garcia M.J., Lathigra R., Allen B., Moreno C., Van Embden J.D.A., Young D. 1992; Genetic analysis of superoxide dismutase, the 23 kilodalton antigen of mycobacterium tuberculosis. Alterations in the superoxide dismutase gene of an isoniazid-resistant strain of mycobacterium tuberculosis. Infect Immun 60:2160–2165
    [Google Scholar]
  29. Zhang Y., Garbe T., Young D. 1993; Transformation with katg restores isoniazid sensitivity in mycobacterium tuberculosis isolates resistant to a range of drug concentrations. Mol Microbiol 8:521–524
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-10-3367
Loading
/content/journal/micro/10.1099/00221287-143-10-3367
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error