1887

Abstract

Bacterial neurotoxins are now being used routinely for the treatment of neuromuscular conditions. Alternative assays to replace or to complement bioassay methods for assessment of the safety and potency of these botulinum neurotoxin-based therapeutic products are urgently needed. Advances made in understanding the mode of action of clostridial neurotoxins have provided the basis for the development of alternative mechanism-based assay methods. Thus, the identification of SNAP-25 (synaptosomal-associated protein of molecular mass 25 kDa) as the intracellular protein target which is selectively cleaved during poisoning by botulinum neurotoxin type A (BoNT/A) has enabled the development of a functional assay for this toxin. Using recombinant DNA methods, a segment of SNAP-25 (aa residues 134-206) spanning the toxin cleavage site was prepared as a fusion protein to the maltose-binding protein in The fusion protein was purified by affinity chromatography and the fragment isolated after cleavage with Factor Xa. Targeted antibodies specific for the N and C termini of SNAP-25, as well as the toxin cleavage site, were prepared and used in an immunoassay to demonstrate BoNT/A endopeptidase activity towards recombinant SNAP-25 substrates. The reaction required low concentrations of reducing agents which were inhibitory at higher concentrations as were metal chelators and some inhibitors of metallopeptidases. The endopeptidase assay has proved to be more sensitive than the mouse bioassay for detection of toxin in therapeutic preparations. A good correlation with results obtained in the bioassay ( = 0·95, = 23) was demonstrated. The endopeptidase assay described here may provide a suitable replacement assay for the estimation of the potency of type A toxin in therapeutic preparations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-10-3337
1997-10-01
2021-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/10/mic-143-10-3337.html?itemId=/content/journal/micro/10.1099/00221287-143-10-3337&mimeType=html&fmt=ahah

References

  1. Balls M., Straughan D.W. 1996; The three r’s of russell & burch and the testing of biological products. Dev Biof Stand 86:8–11
    [Google Scholar]
  2. Binz T., Blasi J., Yamasaki S., Baumeister A., Link E., Sudhof T.C., Jahn R., Niemann H. 1994; Proteolysis of snap-25 by types a and e botulinal neurotoxins. J Biol Chem 269:1617–1620
    [Google Scholar]
  3. Blasi J., Chapman E.R., Link E., Binz T., Yamasaki S., De Camilli P., SUdhof T.C., Niemann H., Jahn R. 1993; Botulinum neurotoxin a selectively cleaves the synaptic protein snap-25. Nature 365:160–163
    [Google Scholar]
  4. Doellgast G.J., Triscott M.X., Beard A.G., Bottoms J.D., Cheng T., Roh B.H., Roman M.G., Hall P.A., Brown J.E. 1993; Sensitive enzyme-linked immunosorbent assay for detection of cfostridium botulinum neurotoxins a, b and e using signal amplification via enzyme-linked coagulation assay. J Cfin Microbiof 31:2402–2409
    [Google Scholar]
  5. Ekong T.A.N., McLellan K., Sesardic D. 1995; Immunological detection of cfostridium botulinum toxin type a in therapeutic preparations. J Immunol Methods 180:181–191
    [Google Scholar]
  6. Ekong T.A.N., Gee C., Blasi J., Sesardic D. 1997; An alternative bioassay for botulinum neurotoxin type a based on its endopeptidase activity. Dev Anim Vet Sci 27:1039–1045
    [Google Scholar]
  7. Ferrer-Montiel A.V., Canaves J.M., DasGupta B.R., Wilson M.C., Montal M. 1996; Tyrosine phosphorylation modulates the activity of clostridia neurotoxins. J Biof Chem 271:18322–18325
    [Google Scholar]
  8. Foran P., Shone C.C., Dolly J.O. 1994; Differences in the protease activities of tetanus and botulinum b toxins revealed by the cleavage of vesicle-associated membrane protein and various sized fragments. Biochemistry 33:15365–15374
    [Google Scholar]
  9. Foran P., Lawrence G.W., Shone C.C., Foster K.A., Dolly J.O. 1996; Botulinum neurotoxin c1 cleaves both syntaxin and snap-25 in intact and permeabilised chromaffin cells : Correlation with its blockade of catecholamine release. Biochemistry 35:2630–2636
    [Google Scholar]
  10. Fukuoka Y., Tachibana T., Yasui A. 1993; Expression of biologically active c3a as fusion proteins. Immunol Lett 38:153–158
    [Google Scholar]
  11. Hallis B., James B.A.F., Shone C.C. 1996; Development of novel assays for botulinum type a and b neurotoxins based on their endopeptidase activity. J Clin Microbiol 34:1934–1938
    [Google Scholar]
  12. Huttner W.B., Schiebler W., Greengard P., De Camilli P. 1983; Synapsin i (Protein i), a nerve terminal-specific phosphoprotein. iii. its association with synaptic vesicles studied in highly purified synaptic vesicle preparation. J Biol Chem 96:1374–1388
    [Google Scholar]
  13. Jankovic J., Brin M.F. 1991; Therapeutic uses of botulinum neurotoxin. N Engl J Med 324:1186–1194
    [Google Scholar]
  14. Kumar P., Colston J.T., Chambers J.P., Rael E.P., Valdes J.J. 1994; Detection of botulinum toxin using an evanescent wave immunosensor. Biosens Bioelectronics 9:57–63
    [Google Scholar]
  15. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage t4. Nature 227:680–685
    [Google Scholar]
  16. Li Y., Foran P., Fairweather N.F., De Paiva A., Weller U., Dougan G., Dolly J.O. 1994; A single mutation in the recombinant light chain of tetanus toxin abolishes its proteolytic activity and removes the toxicity seen after reconstitution with native heavy chain. Biochemistry 33:7014–7020
    [Google Scholar]
  17. Link E., Edelmann L., Chou J.H., Binz T., Yamasaki S., Eisel U., Baumert M., Sudhof T.C., Niemann H., Jahn R. 1992; Tetanus toxin action : Inhibition of neurotransmitter release linked to synaptobrevin proteolysis. Biochem Biophys Res Commun 189:1017–1023
    [Google Scholar]
  18. McLellan K., Gaines Das G.E., Ekong T.A.N., Sesardic D. 1996; Therapeutic botulinum type a toxin : Factors affecting potency. Toxicon 34:975–985
    [Google Scholar]
  19. Montecucco C., Schiavo G. 1993; Tetanus and botulinum neurotoxins : A new family of metalloproteases. Trends Biochem Sci 18:324–327
    [Google Scholar]
  20. Montecucco C., Schiavo G. 1995; The structure and function of tetanus and botulinum neurotoxins. Q Rev Biophys 28:423–472
    [Google Scholar]
  21. Neu H.C., Heppel L.A. 1965; The release of enzymes from escherichiu coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 240:3685–3692
    [Google Scholar]
  22. Niemann H., Hayashi T., Yamasaki S., Neuenberg P., Mannler P., Binz T. 1996; Toxins and substrates: Structural requirements for formation of protein/substrate complexes. In Abstracts of the International Conference for Biomedical Aspects of Clostridial Neurotoxins, Oxford 16: UK, 1996, Abstract
    [Google Scholar]
  23. Oyler G.A., Higgins G.A., Hart R.A., Battenberg E., Billinsgley M., Bloom F.E., Wilson M.C. 1989; The identification of a novel synaptosomal-associated protein, snap-25, differentially expressed by neuronal subpopulations. J Biol Chem 109:3039–3052
    [Google Scholar]
  24. Pearce L.B., Borodic G.E., Johnson E.A., First E.R., MacCallum R.D. 1995; The median paralysis unit: A more pharmacologically relevant unit of biologic activity for botulinum toxin. Toxicon 33:217–227
    [Google Scholar]
  25. Rossetto O., Schiavo G., Montecucco C., Poulain B., Deloye F., Lozzi L., Shone C.C. 1994; Snare motif and neurotoxins. Nature 372:415–416
    [Google Scholar]
  26. Sakaguchi G. 1983; Clostridium Botulinum Toxins. Pharmacol Ther 19:165–194
    [Google Scholar]
  27. Schantz E.J., Johnson E.A. 1992; Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol Rev 56:80–99
    [Google Scholar]
  28. Schiavo G., Benfenati F., Poulain B., Rossetto O., De Laureto P.P., DasGupta B.R., Montecucco C. 1992; Tetanus and botulinum b neurotoxins block transmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835
    [Google Scholar]
  29. Schiavo G., Santucci A., DasGupta B.R., Mehta P.P., Jontes J., Benfenati F., Wilson C.W., Montecucco C. 1993; Botulinum neurotoxins serotypes a and e cleave snap-25 at distinct cooh-terminal peptide bonds. Febs. Lett 335:99–103
    [Google Scholar]
  30. Schiavo G., Rossetto O., Catsicas S., De Laureto P.P., DasGupta B.R., Montecucco C. 1993; Identification of the nerve terminal targets of botulinum neurotoxin serotypes a, d, and e. J Biol Chem 268:23784–23787
    [Google Scholar]
  31. Schmidt J.J., Bostian K.A. 1995; Proteolysis of synthetic peptides by type a botulinum neurotoxin. J Protein Chem 14:703–708
    [Google Scholar]
  32. Sesardic D., McLellan K., Ekong T.A.N., Gaines Das R. 1996; Refinement and validation of an alternative bioassay for potency testing of therapeutic botulinum type a toxin. Pharmacol Toxicol 78:283–288
    [Google Scholar]
  33. Shone C.C., Roberts A.K. 1994; Peptide substrate specificity and properties of the zinc-endopeptidase activity of botulinum type b neurotoxin. Eur J Biochem 225:263–270
    [Google Scholar]
  34. Shone C.C., Wilton-Smith P., Appleton N., Hambleton P., Modi N., Gatley S., Melling J. 1985; Monoclonal antibodybased immunoassay for type a clostridium botulinum toxin is comparable to the mouse bioassay. Appl Environ Microbiol 50:63–67
    [Google Scholar]
  35. Simpson L.L. 1981; The origin, structure and pharmacological activity of botulinum toxin. Pharmacol Rev 33:155–188
    [Google Scholar]
  36. Singh B.R., Lopes T., Silvia M.A. 1996; Immunochemical characterization of type a botulinum neurotoxin in its purified and complexed forms. Toxicon 34:267–275
    [Google Scholar]
  37. Soleilhac J.-M., Cornille F., Martin L., Lenoir C., Fournie-Zaluski M.-C., Roques B.P. 1996; A sensitive and rapid fluorescencebased assay for determination of tetanus toxin peptidase activity. Anal Biochem 241:120–127
    [Google Scholar]
  38. Söllner T., Whiteheart S.W., Brunner M., Erjument-Bromage H., Geromanos S., Tempst P. 1993; Snap receptors implicated in vesicle targeting and fusion. Nature 362:318–324
    [Google Scholar]
  39. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci 76:4350–4354 USA
    [Google Scholar]
  40. Wictome M., Rossetto O., Montecucco C., Shone C.C. 1996; Substrate residues n-terminal to the cleavage site of botulinum type b neurotoxin play a role in determining the specificity of its endopeptidase activity. Febs. Lett 386:133–136
    [Google Scholar]
  41. Williamson L.C., Halpern J.L., Montecucco C., Brown J.E., Neale E.A. 1996; Clostridial neurotoxins and substrate proteolysis in intact neurones: Botulinum neurotoxin c acts on synaptosomal-associated protein of 25 kda. J Biol Chem 271:7694–7699
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-10-3337
Loading
/content/journal/micro/10.1099/00221287-143-10-3337
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error