1887

Abstract

A 3135 bp DNA segment downstream of the gene on the chromosome was cloned and its nucleotide sequence determined. An open reading frame capable of encoding a putative protein of 654 amino acids with a calculated molecular mass of 72.1 kDa was identified. The deduced amino acid sequence was similar to the McpA and McpB proteins of McpA and McpB encode different methyl-accepting chemotaxis proteins (MCPs). A mutant strain containing an antibiotic resistance DNA cassette inserted into the region containing the MCP-like reading frame suffered a complete loss of taxis to the amino acids cysteine, proline, threonine, glycine, serine, lysine, valine and arginine. The open reading frame was designated The wild-type and an mutant strain were analysed for their content of methylated proteins and it was found that encodes a methylated membrane protein that has previously been designated H3. These results show that encodes a third MCP in The transcription start site upstream of the gene was determined by primer extension analysis and it was found to be preceded by a potential promoter sequence that is recognized by the β form of RNA polymerase. The level of β-gaiactosidase expressed from a transcriptional fusion was increased threefold when cells entered the stationary phase. No β-gaiactosidase could be detected in a genetic background.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-10-3231
1997-10-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/10/mic-143-10-3231.html?itemId=/content/journal/micro/10.1099/00221287-143-10-3231&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  3. Bischoff D. S., Ordal G. W. 1991; Sequence and characterization of Bacillus subtilis CheB, a homolog of Escherichia coli CheY, and its role in different mechanism of chemotaxis. J Biol Chem 266:12301–12305
    [Google Scholar]
  4. Boylan R. J., Mendelson N. H., Brooks D., Young F. E. 1972; Regulation of the bacterial cell wall: analysis of a mutant of bacillus subtilis defective in biosynthesis of teichoic acid. J Bacteriol 110:281–290
    [Google Scholar]
  5. Errington J. 1986; A general method for fusion of the escherichia coli lacZ gene to chromosomal genes in Bacillus subtilis . J Gen Microbiol 132:2953–2966
    [Google Scholar]
  6. Fajardo-Cavazos P., Salazar C., Nicholson W. L. 1993; Molecular cloning and characterization of the Bacillus subtilis spore photoproduct lyase (spl) gene, which is involved in repair of UV radiation-induced DNA damage during spore germination. J Bacteriol 175:1735–1744
    [Google Scholar]
  7. Fredrick K. L., Helmann J. D. 1994; Dual chemotaxis signaling pathways in Bacillus subtilis: a σ sd -dependent gene encodes a novel protein with both CheW and CheY homologous domains. J Bacteriol 176:2727–2735
    [Google Scholar]
  8. Fuhrer D. K., Ordal G. W. 1991; Bacillus subtilis CheN, a homolog of CheA, the central regulator of chemotaxis in Escherichia coli . J Bacteriol 173:7443–7448
    [Google Scholar]
  9. Gilman M. Z., Wings J. L., Chamberlin M. J. 1981; Nucleotide sequence of two Bacillus subtilis promoters used by Bacillus subtilis sigma-28 RNA polymerase. Nucleic Acids Res 9:5991–6000
    [Google Scholar]
  10. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  11. Hanlon D. W., Ordal G. W. 1994; Cloning and characterization of genes encoding methyl-accepting chemotaxis proteins in Bacillus subtilis . J Biol Chem 269:14038–14046
    [Google Scholar]
  12. Hanlon D. W., Mérquez-Magana L. M., Carpenter P. B., Chamberlin M. J., Ordal G. W. 1992; Sequence and characterization of Bacillus subtilis CheW. J Biol Chem 267:12055–12060
    [Google Scholar]
  13. Hanlon D. W., Rosario M. M. L., Ordai G. W., Venema G., Van Sinderen D. 1994; Identification of TlpC, a novel 62 kDa MCP-like protein from Bacillus subtilis . Microbiology 140:1847–1854
    [Google Scholar]
  14. Hedblom M. L., Adler J. 1980; Genetic and biochemical properties of Escherichia coli mutants with defects in serine chemotaxis. J Bacteriol 144:1048–1060
    [Google Scholar]
  15. Itaya M. 1993; Physical map of the Bacillus subtilis 168 chromosome. In Bacillus Subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics pp. 463–471 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Kirsch M. L., Peters P. D., Hanlon D. W., Kirby J. R., Ordal G. W. 1993; Chemotactic methylesterase promotes adaptation to high concentrations of attractant in Bacillus subtilis . J Biol Chem 268:18610–18616
    [Google Scholar]
  17. Kirsch M. L., Zuberi A. R., Henner D., Peters P. D., Yazdi M. A., Ordal G. W. 1993; Chemotactic methyltransferase promotes adaptation to repellents in Bacillus subtilis . J Biol Chem 268:25350–25356
    [Google Scholar]
  18. Kossmann M., Wolff C., Manson M. D. 1988; Maltose chemoreceptor of Escherichia coli: Interaction of maltose-binding protein and the tar signal transducer. J Bacteriol 170:4516–4521
    [Google Scholar]
  19. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132
    [Google Scholar]
  20. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  21. Laskey R. A., Mills A. D. 1975; Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem 56:335–341
    [Google Scholar]
  22. Le Moual H., Koshland D. E. Jr 1996; Molecular evolution of the C-terminal cytoplasmic domain of a superfamily of bacterial receptors involved in taxis. J Mol Biol 261:568–585
    [Google Scholar]
  23. Márquez-Magana L. M., Mirel D. B., Chamberlin M. J. 1994; Regulation of σ d expression and activity by spo0, abrB, and sin gene products in Bacillus subtilis . J Bacteriol 176:2435–2438
    [Google Scholar]
  24. Miller J. H. 1972; Assay of β-galactosidase. In Experiments in Molecular Genetics pp. 352–355 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Ordal G. W., Goldman D. J. 1975; Chemotaxis away from uncouplers of oxidative phosphorylation in Bacillus subtilis . Science 189:802–804
    [Google Scholar]
  26. Ordal G. W., Villani D. P., Gibson K. J. 1977; Amino acid chemoreceptors of Bacillus subtilis . J Bacteriol 129:156–165
    [Google Scholar]
  27. Ordal G. W., MSrquez-Magana L., Chamberlin M. J. 1993; Motility and chemotaxis. In Bacillus Subtilis and Other Grampositive Bacteria pp. 765–784 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  28. Rosario M. M., Fredrick K. L., Ordal G. W., Helmann J. D. 1994; Chemotaxis in Bacillus subtilis requires either of two functionally redundant chew homologs. J Bacteriol 176:2736–2739
    [Google Scholar]
  29. Rosario M. M. L., Ordal G. W. 1996; CheC and CheD interact to regulate methylation of Bacillus subtilis methyl-accepting chemotaxis proteins. Mol Microbiol 21:511–518
    [Google Scholar]
  30. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  31. Saxild H. H., Nygaard P. 1987; Genetic and physiological characterization of Bacillus subtilis mutants resistant to purine analogs. J Bacteriol 169:2977–2983
    [Google Scholar]
  32. Saxild H. H., Jensen C. L., Hubrechts P., Hammer K. 1994; Isolation and characterization of Bacillus subtilis genomic lacZ fusions induced during partial purine starvation. J Bacteriol 176:276–283
    [Google Scholar]
  33. Saxild H. H., Jacobsen J. H., Nygaard P. 1995; Functional analysis of the Bacillus subtilis purT gene encoding formate- dependent glycinamide ribonucleotide transformylase. Microbiology 141:2211–2218
    [Google Scholar]
  34. Saxild H. H., Ersen L. N., Hammer K. 1996; dra-nupC–pdp operon of Bacillus subtilis: nucleotide sequence, induction by deoxyribonucleosides, and transcriptional regulation by the deoR-encoded DeoR repressor protein. J Bacteriol 178:424–434
    [Google Scholar]
  35. Ullah A. H., Ordal G. W. 1981; In vivo and in vitro chemotactic methylation in Bacillus subtilis . J Bacteriol 145:958–965
    [Google Scholar]
  36. Youngman P., Perkins J. B., Losick R. 1984; A novel method for the rapid cloning in Escherichia coli of Bacillus subtilis chromosomal DNA adjacent to Tn917 insertions. Mol Gen Genet 195:424–433
    [Google Scholar]
  37. Zuberi A. R., Ying C., Parker H. M., Ordal G. W. 1990; Transposon Tn917lacz mutagenesis of Bacillus subtilis: Identification of two new loci required for motility and chemotaxis. J Bucteriol 172:6841–6848
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-10-3231
Loading
/content/journal/micro/10.1099/00221287-143-10-3231
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error