1887

Abstract

sp. strain YAA is able to use aniline and o-toluidine as the sole carbon and energy source. This strain has several different plasmids and acridine orange curing suggested that aniline utilization in strain YAA was plasmid-encoded. The gene cluster involved in aniline oxidation was cloned in JM109 from the total plasmid DNA of strain YAA. A recombinant containing an 18.5 kb insert fragment showed yellow colouration on aniline-containing plates, indicating the formation of 2-hydroxymuconic semialdehyde from aniline. In addition, subcloning of a 9.0 kb l fragment from the insert in resulted in the accumulation of catechol. Southern hybridization studies indicated that the aniline oxygenase gene () was present on one of the plasmids, pYA1. These results suggest that in strain YAA aniline is degraded via catechol through a pathway involving meta-cleavage of the benzene-ring by plasmid-encoded genes including .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-1-93
1997-01-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/1/mic-143-1-93.html?itemId=/content/journal/micro/10.1099/00221287-143-1-93&mimeType=html&fmt=ahah

References

  1. Amador J.A., Alexander M., Zika R.G. 1991; Degradation of aromatic compounds bound to humic acid by the combined action of sunlight and microorganisms.. Environ Toxicol Ghem 10:475–482
    [Google Scholar]
  2. Anson J.G., Mackinnon G. 1984; Novel Pseudomonas plasmid involved in aniline degradation.. Appl Environ Microbiol 48:868–869
    [Google Scholar]
  3. Aoki K., Shinke R., Nishira H. 1983; Metabolism of aniline by Rhodococcus erythropolis AN-13.. Agric Biol Chem 47:1611–1616
    [Google Scholar]
  4. Axcell B.C., Geary P.J. 1975; Purification and some properties of a soluble benzene-oxidizing system from a strain Pseudomonas. . Biochem J 146:173–183
    [Google Scholar]
  5. Birnboim H.C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA.. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  6. Brosius J., Palmer M.L., Kennedy P.J., Noller H.F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci USA 754801–1805
    [Google Scholar]
  7. Eaton R.W., Timmis K.N. 1986; Characterization of a plasmid-specified pathway for catabolism of isopropylbenzene In Pseudomonas putida RE204.. J Bacteriol 168:123–131
    [Google Scholar]
  8. Fuchs K., Schreiner A., Lingens F. 1991; Degradation of 2- methylaniline and chlorinated isomers of 2-methylaniline by Rhodococcus rhodochrous strain CTM.. J Gen Microbiol 137:2033–2039
    [Google Scholar]
  9. Fukumori F., Saint C.P. 1995; Analysis of the aniline degradation pathway of Pseudomonas putida UCC2 (pTDNl).. Fifth International Symposium on Pseudomonas: Biotechnology and Molecular Biology abstract, p. 70.
    [Google Scholar]
  10. Gibson D.T., Hensley M., Yoshioka H., Mabry T.J. 1970; Formation of (+)-cis-2,3-dihydroxy-1-methylcyclohexa-4,6- diene from toluene by Pseudomonas putida. . Biochemistry 9:1626–1630
    [Google Scholar]
  11. Guyer M. 1978; The gamma delta sequence of F is an insertion sequence.. J Mol Biol 126:135–140
    [Google Scholar]
  12. Hasegawa T. 1985 Biseibutsu no bunrui to doutei. Tokyo:: Gakkai Shuppan Center.;
    [Google Scholar]
  13. Juni E. 1984 In Bergey’s Manual of Systematic Bacteriology 1303–307 Krieg N. R., Holt J. G. Edited by Baltimore:: Williams & Wilkins.;
    [Google Scholar]
  14. Konopka A., Knight D., Turco R.F. 1989; Characterization of a Pseudomonas sp. capable of aniline degradation in the presence of secondary carbon sources.. Appl Environ Microbiol 55:385–389
    [Google Scholar]
  15. Loidl M., Hinteregger C., Ditzelmüller G., Ferschl A., Streichsbier F. 1990; Degradation of aniline and monochlorinated anilines by soil-borne Pseudomonas acidovoransstrain.. Arch Microbiol 155:56–61
    [Google Scholar]
  16. Lyons C.D., Katz S., Bartha R. 1984; Mechanisms and pathways of aniline elimination from aquatic environments.. Appl Environ Microbiol 48:491–496
    [Google Scholar]
  17. Lyons C.D., Katz S.E., Bartha R. 1985; Persistence and mutagenic potential of herbicide-derived aniline residues in pond water.. Bull Environ Contam Toxicol 35:696–703
    [Google Scholar]
  18. McClure N.C., Venables W.A. 1986; Adaptation of Pseudomonas putida mt-2 to growth on aromatic amines.. J Gen Microbiol 132:2209–2218
    [Google Scholar]
  19. McClure N.C., Venables W.A. 1987; pTDNl, a catabolic plasmid involved in aromatic amine catabolism in Pseudomonas putida mt-2.. J Gen Microbiol 133:2073–2077
    [Google Scholar]
  20. Meyers N.L. 1992; Molecular cloning and partial characterization of the pathway for aniline degradation in Pseudomonassp. strain CIT1.. Curr Microbiol 24:303–310
    [Google Scholar]
  21. Nakazawa T., Yokota T. 1973; Benzoate metabolism in Pseudomonas putida (arvilla) mt-2, demonstration of two benzoate pathways.. J Microbiol 115:262–267
    [Google Scholar]
  22. Rochelle P.A., Will J.A.K., Fry J.C., Jenkins G.J.S., Parkes R.J., Turley C.M., Weightman A.J. 1995; Extraction and amplification of 16S rRNA genes from deep marine sediments and seawater to assess bacterial community diversity.. In Nucleic Acids in the Environment pp. 219–239 Trevors J. T., van Elsas J. D. Edited by Berlin:: Springer.;
    [Google Scholar]
  23. Saint C.P., McClure N.C., Venables W.A. 1990; Physical map of the aromatic amine and m-toluate catabolic plasmid pTDNl in Pseudomonas putida: location of a unique meta-cleavage pathway.. J Gen Microbiol 136:615–625
    [Google Scholar]
  24. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  25. Shirai K. 1986; Screening of microorganisms for catechol production from benzene.. Agric Biol Chem 50:2875–2880
    [Google Scholar]
  26. Snell F.D. 1954 In Colorimetric Methods of Analysis, 3rd. IV: pp. 198–199 Amsterdam:: Van Nostrand.;
    [Google Scholar]
  27. Southern E.M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis.. J Mol Biol 98:503–517
    [Google Scholar]
  28. Takeo M., Maeda Y., Okada H., Miyama K., Mori K., Ike M., Fujita M. 1995; Molecular cloning and sequencing of the phenol hydroxylase gene from Pseudomonas putida BH.. J Ferment Bioeng 79:485–488
    [Google Scholar]
  29. Woese C.R. 1987; Bacterial evolution.. Microbiol Rev 51:221–271
    [Google Scholar]
  30. Zeyer J., Wasserfallen A., Timmis K. 1985; Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway.. Appl Environ Microbiol 50:447–453
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-1-93
Loading
/content/journal/micro/10.1099/00221287-143-1-93
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error