1887

Abstract

A new mutant of K-12 supersensitive to both hydrophobic and large hydrophilic antibiotics was isolated and characterized. The mutant grew well at 28 °C, poorly at 37 °C, and did not grow at 42 °C. The rate of its lipid A biosynthesis was reduced as compared to that of the parent strain. This deficiency was rescued by a novel locus, ORF195, the function of which has not been elucidated. ORF195 is located in the 76 min region in the chromosome and encodes a hypothetical 21.8 kDa protein with no signal sequence. ORF195 isolated from the mutant strain had an identical sequence to the wild-type allele, indicating a suppressor function of the gene product.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-1-73
1997-01-01
2021-04-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/1/mic-143-1-73.html?itemId=/content/journal/micro/10.1099/00221287-143-1-73&mimeType=html&fmt=ahah

References

  1. Armstrong S.K., Pettis G.S., Forresyer L.J., McIntosh M.A. 1989; The Escherichia coli enterobactin biosynthesis gene, entD: nucleotide sequence and membrane localization of its protein product.. Mol Microbiol 3:757–766
    [Google Scholar]
  2. Black T.A., Wolk C.P. 1994; Analysis of a Het mutation in Anabaena sp. strain PCC 7120 implicates a secondary metabolite in the regulation of heterocyst spacing.. J Bacteriol 176:2282–2292
    [Google Scholar]
  3. Boman H.G. 1975; Characterization of lipopolysaccharides from Escherichia coli K-12 mutants.. J Bacteriol 121:455–464
    [Google Scholar]
  4. Burks G, Cinkosky M. J., Fischer W.M., Gilna P., Hayden J.E., Keen G.M., Kelly M., Kristofferson D., Lawrence J. 1992; GenBank.. Nucleic Acids Res 20:2065–2069
    [Google Scholar]
  5. Clementz T., Bednarski J., Raetz C.R.H. 1995; Escherichia coli genes encoding KDO dependent acyltransferases that in-corporate laurate and myristate into lipid A.. In Abstracts of the Annual Meeting of the American Society for Biochemistry and Molecular Biology, May 21-25 1995 9:1311 Federation of American Societies for Experimental Biology
    [Google Scholar]
  6. Coleman W.G., Leive L. L. 1979; Two mutations which affect the barrier function of the Escherichia coli K-12 outer membrane.. J Bacteriol 139:899–910
    [Google Scholar]
  7. Galloway S., Raetz C. R. H. 1990; A mutant of Escherichia coli defective in the first step of endotoxin biosynthesis.. J Biol Chem 265:6394–6402
    [Google Scholar]
  8. Grossman T.H., Tuckman M., Ellestad S., Osburne M. 1993; Isolation and characterization of Bacillus subtilis genes involved in siderophore biosynthesis: relationship between B. subtilis sfp0 and Escherichia coli entD genes.. J Bacteriol 175:6203–6211
    [Google Scholar]
  9. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids.. J Mol Biol 166:557–580
    [Google Scholar]
  10. Helander I.M., Hirvas L., Tuominen J., Vaara M. 1992; Preferential synthesis of heptaacyl lipopolysaccharide by the ssc permeability mutant of Salmonella typhimurium.. Eur J Biochem 204:1101–1106
    [Google Scholar]
  11. Helander I.M., Lindner B., Seydel U., Vaara M. 1993; Defective biosynthesis of the lipid A component of temperature- sensitive fir A (omsA) mutant of Escherichia coli.. Eur J Biochem 212:363–369
    [Google Scholar]
  12. Hirvas L., Koski P., Vaara M. 1991a; Identification and sequence analysis of the gene mutated in the conditionally lethal outer membrane permeability mutant SS-C of Salmonella typhimurium.. EMBO J 10:1017–1023
    [Google Scholar]
  13. Hirvas L., Koski P., Vaara M. 1991b; The ompH gene of Yersinia enterocolitica: cloning, sequencing, expression, and comparison with known enterobacterial ompH sequences.. J Bacteriol 173:1223–1229
    [Google Scholar]
  14. Huang C.-C., Ano T., Shoda M. 1993; Nuclotide sequence and characteristics of the gene, lpa-14, responsible for biosynthesis of lipopeptide antibiotics iturin A and surfactin from Bacillus subtilis RB14.. J Ferment Bioeng 6:445–450
    [Google Scholar]
  15. Karow M., Georgopoulos C. 1991; Sequencing, mutational analysis, and transcriptional regulation of the Escherichia coli htrB gene.. Mol Microbiol 5:2285–2292
    [Google Scholar]
  16. Karow M., Georgopoulos C. 1992; Isolation and characterization of the Escherichia coli msbB gene, a multicopy suppressor of null mutations in the high-temperature requirement gene htrB.. J Bacteriol 174:702–710
    [Google Scholar]
  17. Karow M., Georgopoulos C. 1993; The essential Escherichia coli msbA gene, a multicopy suppressor of null mutations in the htrB gene, is related to the universal conserved family of ATP- dependent translocators.. Mol Microbiol 7:69–79
    [Google Scholar]
  18. Karow M., Fayet O., Cegielska A., Ziegelhoffer T., Georgopoulos C. 1991; Isolation and characterization of the Escherichia coli htrB gene, whose product is essential for bacterial viability above 33 °C in rich media.. J Bacteriol 173:741–750
    [Google Scholar]
  19. Karow M., Fayet O., Georgopoulos C. 1992; The lethal phenotype caused by null mutations in the Escherichia coli htrB gene is suppressed by mutations in the accBC operon, encoding two subunits of acetyl coenzyme A carboxylase.. J Bacteriol 174:7407–7418
    [Google Scholar]
  20. Koski P., Vaara M. 1991; Polyamines as constituents of the outer membranes of Escherichia coli and Salmonella typhimurium.. J Bacteriol 173:3695–3699
    [Google Scholar]
  21. Koski P., Rhen M., Kantele J., Vaara M. 1989; Isolation, cloning, and primary structure of a cationic 16-kDa outer membrane protein of Salmonella typhimurium.. J Biol Chem 264:18973–18980
    [Google Scholar]
  22. Kotani H., Kaneko T., Matsubayashi T., Sato S., Sugiura M., Tabata S. 1994; A physical map of the genome of a unicellular Cyanobacterium cynechocystis sp. strain PCC6803.. DNA Res 1:303–307
    [Google Scholar]
  23. Kratzschmar J., Krause M., Marahiel M.A. 1989; Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases.. J Bacteriol 171:5422–5429
    [Google Scholar]
  24. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4.. Nature 227:680–685
    [Google Scholar]
  25. Lee N.-G., Sunshine M.G., Engstrom J.J., Gibson B.W., Apicella M.A. 1995; Mutation of the htrB locus of Haemophilus influenzae nontypable strain 2019 is associated with modifications of lipid A and phosphorylation of the lipo-oligosaccharide.. J Biol Chem 270:27151–27159
    [Google Scholar]
  26. Ma D., Cook D.N., Alberti M., Pon N.G., Nikaido H., Hearst J.E. 1995; Genes acrA and acrB encode a stress induced efflux system of Escherichia coli.. Mol Microbiol 16:45–55
    [Google Scholar]
  27. Morikawa M., Ito M., Imanaka T. 1992; Isolation of new surfactant producer Bacillus pumilus A-l, and cloning and nucleotide sequence of the regulator gene psf-1.. J Ferment Bioeng 74:255–261
    [Google Scholar]
  28. Nakano M.M., Corbell N., Benson J., Zuber P. 1992; Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis.. Mol Gen Genet 232:313–321
    [Google Scholar]
  29. Nikaido H. 1990; Permeability of the lipid domains of bacterial membranes. Membrane transport and information storage.. Advances in Membrane Fluidity 4 pp. 165–190 Edited by Aloia R.C., Curtain C.C., Gordon L.M. New York: Alan R. Liss;
    [Google Scholar]
  30. Nikaido H., Nakae T. 1979; The outer membrane of gram-negative bacteria.. Adv Microb Physiol 20:163–250
    [Google Scholar]
  31. Nikaido H., Vaara M. 1985; Molecular basis of bacterial outer membrane permeability.. Microbiol Rev 49:1–32
    [Google Scholar]
  32. Nikaido H., Vaara M. 1987; Outer membrane.. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp. 3–22 Edited by Neidhardt F.C., Ingraham J.L., Brooks Low K., Magasanik B., Schaechter M., Umbarger H.E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  33. Normark S., Boman H.G., Mattson E. 1969; Mutant of Escherichia coli with anomalous cell division and ability to decrease episomally and chromosomally mediated resistance to ampicillin and several other antibiotics.. J Bacteriol 92:1334–1342
    [Google Scholar]
  34. Pearson W.R., Lipman V. 1988; Improved tools for biological sequence comparison.. Proc Natl Acad Sci USA 852444–2448
    [Google Scholar]
  35. Raetz C.R.H. 1990; Biochemistry of endotoxins.. Annu Rev Biochem 59:129–170
    [Google Scholar]
  36. Raetz C.R.H. 1993; Bacterial endotoxins: extraordinary lipids that activate eucaryotic signal transduction.. J Bacteriol 175:5745–5753
    [Google Scholar]
  37. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Schnaitman C.A., Klena J. D. 1993; Genetics of lipopoly-saccharide biosynthesis in enteric bacteria.. Microbiol Rev 57:655–682
    [Google Scholar]
  39. Sofia H.J., Burland V., Daniels D.L., Plunkett G. III Blattner F.R. 1994; Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0-81.5.. Nucleic Acids Res 22:2576–2586
    [Google Scholar]
  40. Somerville J.E., Cassiano L., Bainbridge B., Cunningham M.D., Darveau R.P. 1996; A novel Escherichia coli lipid A mutant that produces an antiinflammatory lipopolysaccharide.. J Clin Immunol 97:359–365
    [Google Scholar]
  41. Sukupolvi S., Vaara M., Helander I.M., Viljanen P., Mäkelä P.H. 1984; New Salmonella typhimurium mutants with altered outer membrane permeability.. J Bacteriol 159:704–712
    [Google Scholar]
  42. Tamaki S., Sato T., Matsuhashi M. 1971; Role of lipopoly-saccharides in antibiotic resistance and bacteriophage adsorption of Escherichia coli K-12.. J Bacteriol 105:968–975
    [Google Scholar]
  43. Tsuruoka T., Ito M., Tomioka S., Hirata A., Matsuhashi M. 1988; Thermosensitive omsA mutation of Escherichia coli that causes thermoregulated release of periplasmic proteins.. J Bacteriol 170:5229–5235
    [Google Scholar]
  44. Vaara M. 1992; Eight bacterial proteins, including UDP-N-acetylglucosamine acyltransferase (LpxA) and three other transferases of Escherichia coli, consist of a six-residue periodicity theme.. FEMS Microbiol Lett 97:249–254
    [Google Scholar]
  45. Vaara M. 1993; Antibiotic-supersusceptible mutants of Escherichia coli and Salmonella typhimurium.. Antimicrob Agents Chemother 37:2255–2260
    [Google Scholar]
  46. VonGabain A., Belasco J.G., Schottel J.L., Chang A.C.Y., Cohen S. N. 1983; Decay of mRNA in Escherichia coli: investigation of the fate of specific segments of transcripts.. Proc Natl Acad Sci USA 80653–657
    [Google Scholar]
  47. Vuorio R., Vaara M. 1992a; The lipid A biosynthesis mutation lpxA2 of Escherichia coli results in drastic antibiotic supersusceptibility.. Antimicrob Agents Chemother 36:826–829
    [Google Scholar]
  48. Vuorio R., Vaara M. 1992b; Mutants carrying conditionally lethal mutations in outer membrane genes omsA and firA (ssc) are phenotypically similar, and omsA is allelic to firA.. J Bacteriol 174:7090–7097
    [Google Scholar]
  49. Vuorio R., Vaara M. 1995; Comparison of the phenotypes of the IpxA and IpxD mutants of Escherichia coli.. FEMS Microbiol Lett 134:227–232
    [Google Scholar]
  50. Vuorio R., Härkänen T., Vaara M. 1994; The novel hexapeptide motif found in the acyltransferases LpxA and LpxD of lipid A biosynthesis is conserved in various bacteria.. FEBS Lett 337:289–292
    [Google Scholar]
  51. Wilkinson R.G., Gemski P. Jr Stocker B.A.D. 1972; Non-smooth mutants of Salmonella typhimurium: differentiation by phage sensitivity and genetic mapping.. J Gen Microbiol 70:527–554
    [Google Scholar]
  52. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors.. Gene 33:103–119
    [Google Scholar]
  53. Young K., Silver L.L., Bramhill D., Caceres C.A., Stachula S.A., Shelly S.E., Raetz C.R.H., Anderson M.S. 1993; The second step of lipid A biosynthesis, UDP-3-o-acyl-GlcNAc deacetylase, is encoded by the pleiotropic permeability/cell division gene envA of E. coli.. FASEB J 7:1268
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-1-73
Loading
/content/journal/micro/10.1099/00221287-143-1-73
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error