1887

Abstract

In timber infested by brown-rot fungi, a rapid loss of strength is attributed to production of hydroxyl radicals (HO). The hydroxyl radicals are produced by the Fenton reaction [Fe(II)/HO], but the pathways leading to Fe(II) and HO have remained unclear. Cellobiose dehydrogenase, purified from cultures of , has been shown to couple oxidation of cellodextrins to conversion of Fe(III) to Fe(II). Two characteristics of brown rot are release of oxalic acid and lowering of the local pH, often to about pH 2. Modelling of Fe(II) speciation in the presence of oxalate has revealed that Fe(II)-oxalate complexes are important at pH 4-5, but at pH 2 almost all Fe(II) is in an uncomplexed state which reacts very slowly with dioxygen. Diffusion of Fe(II) away from the hyphae will promote conversion to Fe(II)-oxalate and autoxidation with HO as product. Thus the critical Fe(II)/HO combination will be generated at a distance, enabling hydroxyl radicals to be formed without damage to the hyphae.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-1-259
1997-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/1/mic-143-1-259.html?itemId=/content/journal/micro/10.1099/00221287-143-1-259&mimeType=html&fmt=ahah

References

  1. Allison J.D., Brown D.S., Novo-Gradac K.J. 1990 MINTEQA2/PRODEFA2: a Geochemical Assessment Model for Environmental Systems: Version 3.0 User’s Manual. Athens, GA: Environmental Research Laboratory, US Environmental Protection Agency.;
    [Google Scholar]
  2. Ander P. 1994; The cellobiose-oxidizing enzymes CBQ and CbO as related to lignin and cellulose degradation - a review.. FEMS Microbiol Rev 13:297–312
    [Google Scholar]
  3. Ander P., Eriksson K.-E. 1978; Lignin degradation and utilization by microorganisms.. Prog Ind Microbiol 14:1–58
    [Google Scholar]
  4. Backa S., Gierer J., Reitberger T., Nilsson T. 1992; Hydroxyl radical activity in brown rot fungi studied by a new chemiluminescence method.. Holzforschung 46:61–67
    [Google Scholar]
  5. Bao W., Usha S.N., Renganathan V. 1993; Purification and characterization of cellobiose dehydrogenase: a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerocbaete chrysosporium.. Arch Biochem Biophys 300:705–713
    [Google Scholar]
  6. Bard A.J. editor 1982 Encyclopaedia of Electrochemistry of the Elements, vol. IX, part A, Hg, Fe, H. New York: Marcel Dekker;
    [Google Scholar]
  7. Brown E.R., Mazzarella J.D. 1987; Mechanism of oxidation of ferrous polydentate complexes by dioxygen.. J Electroanal Chem 222:192–210
    [Google Scholar]
  8. Burkitt M.J., Gilbert B.C. 1991; The autoxidation of iron(II) in aqueous systems: the effects of iron chelation by physiological, non-physiological and therapeutic chelators on the generation of reactive oxygen species and the inducement of biomolecular damage.. Free Rad Res Comm 14:107–123
    [Google Scholar]
  9. Cowling E.B. 1961; Comparative biochemistry of the decay of sweetgum sapwood by white-rot and brown-rot fungi.. Technical Bulletin1258 US Department of Agriculture; Washington, DC:
    [Google Scholar]
  10. Cowling E.B., Brown W. 1969; Structural features of cellulosic materials in relation to enzymatic hydrolysis.. Am Chem Soc Adv Chem Ser 95:152–187
    [Google Scholar]
  11. Cox M.C., Rogers M.S., Cheesman M., Jones G.D., Thomson A.J., Wilson M.T., Moore G.R. 1992; Spectroscopic identification of the haem ligands of cellobiose oxidase.. FEBS Lett 307:233–236
    [Google Scholar]
  12. Davies C.W. 1962 Ion Association. Washington, DC: Butterworths;
    [Google Scholar]
  13. Deneux M., Meilleur R., Benoit R.L. 1968; Chélates du fer(III) avec des anions dicarboxylates.. Can J Chem 46:1383–1388
    [Google Scholar]
  14. Dutton M.V., Evans C.S., Atkey P.T., Wood D.A. 1993; Oxalate production by basidiomycetes, including the white-rot species Coriolus versicolor and Phanerochaete chrysosporium.. Appl Microbiol Biotechnol 39:5–10
    [Google Scholar]
  15. Enoki A., Hirano T., Tanaka H. 1992; Extracellular substance from the brown-rot basidiomycete Gloeophyllum trabeum that produces and reduces hydrogen peroxide.. Mater Org 27:247–261
    [Google Scholar]
  16. Eriksson K.-E.L, BlanChette R. A., Ander P. 1990; Microbial and Enzymatic Degradation of Wood and Wood Components.. Berlin: Springer;
    [Google Scholar]
  17. Espejo E., Agosin E. 1991; Production and degradation of oxalic acid by brown-rot fungi.. Appl Environ Microbiol 57:1980–1986
    [Google Scholar]
  18. Evans C.S., Burns P.J., Dutton M., Brown S. 1990; 2-Amino-4N-ureidopropionic acid (albizzine) and its oxalyl derivative in hyphae of Coniophora puteana.. Phytochemistry 29:2159–2160
    [Google Scholar]
  19. Falck R. 1926; Über korrosive und destructive Holzzersetzung und ihre biologische Bedeutung.. Ber Deutsch Bot Ges 44:652–664
    [Google Scholar]
  20. Grayson M. editor 1982 Kirk-Othmer Encyclopaedia of Chemical Technology, 3rd edn. 20 New York: John Wiley;
    [Google Scholar]
  21. Green F., Larsen M.J., Winandy J.E., Highley T.L. 1991; Role of oxalic acid in incipient brown-rot decay.. Mater Org 26:191–213
    [Google Scholar]
  22. Grootveld M., Halliwell B. 1986; An aromatic hydroxylation assay for hydroxyl radicals utilizing high-performance liquid chromatography.. Free Rad Res Commun 1:243–250
    [Google Scholar]
  23. Halliwell B., Gutteridge J.M.C. 1989 Free Radicals in Biology and Medicine, 2nd edn.. Oxford: Oxford University Press;
    [Google Scholar]
  24. Hatchard C.G., Parker C.A. 1956; A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer.. Proc R Soc Lond A 235518–536
    [Google Scholar]
  25. Highley T.L. 1977; Requirements for cellulose degradation by a brown-rot fungus.. Mater Org 12:25–36
    [Google Scholar]
  26. Hirano T., Tanaka H., Enoki A. 1995; Extracellular substance from the brown-rot basidiomycete Tyromyces palustris that reduces molecular oxygen to hydroxyl radicals and ferric iron to ferrous iron.. Mokuzai Gakkaishi 41:334–341
    [Google Scholar]
  27. Horne R.A. 1960; The kinetics of the oxalate catalysis of the iron(II)-iron(III) electron-exchange reaction in aqueous solution.. J Phys Chem 64:1512–1517
    [Google Scholar]
  28. Illman B.L, Meinholtz D. C., Highley T. L. 1989; Oxygen free radical detection in wood colonized by the brown-rot fungus Postia placenta.. Biodeter Res 2:497–509
    [Google Scholar]
  29. Kirk T.K. 1983; Degradation and conversion of lignocelluloses.. In The Filamentous Fungi vol. 4, Fungal Technology pp. 266–295 Edited by Smith J.E., Berry D.R., Kristiansen B. London: Edward Arnold;
    [Google Scholar]
  30. Kirk T.K., Ibach R., Mozuch M.D., Conner A.H., Highley T.L. 1991; Characteristics of cotton cellulose depolymerized by a brown-rot fungus, by acid, or by chemical oxidants.. Holzforschung 45:239–244
    [Google Scholar]
  31. Koenigs J.W. 1972; Production of extracellular hydrogen peroxide and peroxidase by wood-rotting fungi.. Phytopathology 62:100–110
    [Google Scholar]
  32. Koenigs J.W. 1974a; Production of hydrogen peroxide by wood-rotting fungi in wood and its correlation with weight loss, depolymerization and pH changes.. Arch Microbiol 99:129–145
    [Google Scholar]
  33. Koenigs J.W. 1974b; Hydrogen peroxide and iron: a proposed system for decomposition of wood by brown-rot basidiomycetes.. Wood Fibre 6:66–80
    [Google Scholar]
  34. Kremer S.M., Wood P.M. 1992a; Continuous monitoring of cellulose oxidation by cellobiose oxidase from Phanerochaete chrysosporium.. FEMS Microbiol Lett 92:187–192
    [Google Scholar]
  35. Kremer S.M., Wood P.M. 1992b; Evidence that cellobiose oxidase from P. chrysosporium is primarily an Fe(III) reductase : kinetic comparison with neutrophil NADPH oxidase and yeast flavocytochrome b2 .. Eur J Biochem 205:133–138
    [Google Scholar]
  36. Kremer S.M., Wood P.M. 1992c; Production of Fenton’s reagent by cellobiose oxidase from cellulolytic cultures of Phanerochaete chrysosporium.. Eur J Biochem 208:807–814
    [Google Scholar]
  37. Lu J., Goodell B., Liu J., Enoki A., Jellison J., Tanaka H., Fekete F. 1994; The role of oxygen and oxygen radicals in the one-electron oxidative reactions mediated by low-molecular weight chelators isolated from Gloeophyllum trabeum. International Research Group on Wood Preservation Document IRG/WP 94-10086.. Stockholm: IRG Secretariat;
    [Google Scholar]
  38. Martell A.E., Smith R.M. 1977 Critical Stability Constants, vol. 3, Other Organic Ligands. New York: Plenum Press;
    [Google Scholar]
  39. Micales J. A., Highley T. L. 1989; Physiological characteristics of a non-degradative isolate of Postia (= Poria) placenta.. Mycologia 81:205–215
    [Google Scholar]
  40. Micskei K. 1987; Equilibria in aqueous solutions of some iron(II) complexes.. J Chem Soc Dalton Trans255–257
    [Google Scholar]
  41. Morpeth F.F. 1991; Cellobiose oxidoreductases.. In : Chemistry and Biochemistry of Flavoenzymes 1 pp. 337–348 Edited by Müller F. Boca Raton, FL: CRC Press;
    [Google Scholar]
  42. Rayner A.D.M., Boddy L. 1988 Fungal Decomposition of Wood. Chichester: John Wiley;
    [Google Scholar]
  43. Schaap W.B., Laitinen H.A. 1954; Polarography of iron oxalates, malonates and succinates.. J Am Chem Soc 76:5868–5871
    [Google Scholar]
  44. Schmidhalter D.R., Canevascini G. 1992; Characterization of the cellulolytic system from the brown-rot fungus Coniophora puteana.. Appl Microbiol Biotechnol 37:431–436
    [Google Scholar]
  45. Schmidhalter D.R., Canevascini G. 1993; Isolation and characterization of cellobiose dehydrogenase from the brown-rot fungus Coniophora puteana.. Arch Biochem Biophys 300:559–563
    [Google Scholar]
  46. Schmidt C.J., Whitten B.K., Nicholas D. D. 1981; A proposed role for oxalic acid in non-enzymatic wood decay by brown-rot fungi.. Proc Am Wood-Preservers Assoc 77157–164
    [Google Scholar]
  47. Shimazono H. 1955; Oxalic acid decarboxylase: a new enzyme from the mycelium of wood destroying fungi.. J Biochem 42:321–340
    [Google Scholar]
  48. Wilcox W.W. 1968; Changes in wood microstructure through progressive stages of decay.. US Dep Agric For Serv Res Paper FPL-70
    [Google Scholar]
  49. Wood P.M. 1988; The potential diagram for oxygen at pH 7.. Biochem J 253:287–289
    [Google Scholar]
  50. Wood P.M. 1994; Pathways for production of Fenton’s reagent by wood-rotting fungi.. FEMS Microbiol Rev 13:313–320
    [Google Scholar]
  51. Zepp R.G., Faust B.C., Hoigne J. 1992; Hydroxyl radical formation in aqueous solutions (pH 3–8) of iron(II) with hydrogen peroxide: the photo-Fenton reaction.. Environ Sci Technol 26:313–319
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-1-259
Loading
/content/journal/micro/10.1099/00221287-143-1-259
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error