1887

Abstract

Some mutants of defective in exopolysaccharide synthesis, were phenotypically complemented by two different regions of cloned chromosomal DNA. One of these had been shown to contain a gene termed a novel class of transcriptional regulator. The other contains a gene termed which encodes a glycosyltransferase that is involved in one of the early steps in exopolysaccharide synthesis. Mutations in reduced the expression of and a model to account for the complementation of certain alleles by both and is presented. Tn insertions into which expressed alkaline phosphatase activity were isolated and mapped, confirming the membrane location of the gene product. Some of these mutations were dominant, causing merodiploids to be non-mucoid. is linked to two genes, one encoding an ω-aminotransferase and the other encoding an aldehyde dehydrogenase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-142-9-2621
1996-09-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/9/mic-142-9-2621.html?itemId=/content/journal/micro/10.1099/00221287-142-9-2621&mimeType=html&fmt=ahah

References

  1. Aird E. L. H., Brightwell G., Jones M. A., Johnston A. W. B. 1991; Identification of the exo loci required for cxopolysaccharide synthesis in Agrobacterium radiobacter NCIB 11883. J Gen Microbiol 137:2287–2297
    [Google Scholar]
  2. Becker A., Kleikmann A., Arnold W., Puhler A. 1993a; Analysis of the R hizobium meliloti exoH-exoK-exoL fragment; ExoK shows homology to excreted β-l,3→1,4-glucanases and ExoH resembles membrane proteins. Mol Gen Genet 238:145–154
    [Google Scholar]
  3. Becker A., Kleikmann A., Arnold W., Puhler A. 1993b; Identification and analysis of the R hizobium meliloti exoAMONP genes involved in exopolysaccharide biosynthesis and mapping of promoters located on the exoHKLAMONP fragment. Mol Gen Genet 241:367–379
    [Google Scholar]
  4. Becker A., Kleikmann A., Kuster H., Keller M., Arnold W., Puhler A. 1993c; Analysis of the Rhizobium meliloti genes exo V, exoW, exoT, and exoI involved in the exopolysaccharide bio-synthesis and nodule invasion; exoV and exoW probably encode glycosyltransferases. Mol Plant-Microbe Interact 6:735–744
    [Google Scholar]
  5. Borthakur D., Johnston A. W. B. 1987; Sequence of psi, a gene on the symbiotic plasmid which inhibits exopolysaccharide production and demonstration that its transcription is inhibited by psr,another gene on the sym plasmid. Mol Gen Genet 207:149–154
    [Google Scholar]
  6. Borthakur D., Downie J. A., Johnston A. W. B., Lamb J. W. 1985; psi, a plasmid-linked Rhizobium phaseoli gene which inhibits exopolvsaccharide production and is required for symbiotic nitrogen fixation. Mol Gen Genet 200:278–282
    [Google Scholar]
  7. Borthakur D., Barker R. F., Latchford J. W., Rossen L., Johnston A. W. B. 1988; Analysis of pss genes of Rhizobium leguminosarum required for exopolysaccharide synthesis and nodulation of peas: their primary structure and their interaction with psiand other nodulation genes. Mol Gen Genet 213:155–162
    [Google Scholar]
  8. Brickman E., Beckwith J. 1975; Analysis of the regulation of Escherichia coli alkaline phosphatase synthesis using deletions and ɸ80 transducing phages. J Bacteriol 119:307–316
    [Google Scholar]
  9. Brightwell G., Hussain H., Tiburtius A., Yeoman K. H., Johnston A. W. B. 1995; Pleiotropic effects of regulatory rosmutants of Agrobacterium radiobacter and their interaction with Fe and glucose. Mol Plant-Microbe Interact 8:747–754
    [Google Scholar]
  10. Buendia A. M., Enenkel B., Koplin R., Niehaus K., Arnold W., Puhler A. 1991; The R hizobium meliloti exoZ/exoB fragment of megaplasmid 2: ExoB functions as a UDP-glucose 4´ epimerase and ExoZ shows homology to NodX of R. leguminosarum bv. viciae strain TOM. Mol Microbiol 5:1519–1530
    [Google Scholar]
  11. Cangelosi G. A., Hung L., Puvanesarajah V., Stacey G., Ozga D. A., Leigh J. A., Nester E. W. 1987; Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their roles in plant interactions. J Bacteriol 169:2086–2091
    [Google Scholar]
  12. Close T. J., Tait R. C., Kado C. I. 1985; Regulation of Ti plasmid virulence genes by a chromosomal locus of Agrobacterium tumefaciens . J Bacteriol 164:774–781
    [Google Scholar]
  13. Cooley M. B., D̓Souza M. R., Kado C. I. 1991; The virC and virD operons of Agrobacterium Ti plasmid are regulated by the chromosomal ros gene; analysis of the cloned ros gene. J Bacteriol 173:2608–2616
    [Google Scholar]
  14. Derman A. I., Beckwith J. 1995; Escherichia coli alkaline phosphatase localized to the cytoplasm slowly acquires enzymatic activity in cells whose growth has been suspended: a caution for gene fusion studies. J Bacteriol 177:3764–3770
    [Google Scholar]
  15. Dodd I. B., Egan J. B. 1990; Improved detection of helix-turnhelix DNA binding motifs in protein sequences. Nucleic Acids Res 18:5019–5026
    [Google Scholar]
  16. Doherty D., Leigh J. A., Glazebrook J., Walker G. W. 1988; Rhizobium meliloti mutants that overproduce the R.meliloti acidic calcofiuor-binding exopolysaccharide. J Bacteriol 170:4249–4256
    [Google Scholar]
  17. D̓Souza-Alt M. R., Cooley M. B., Kado C. I. 1993; Analysis of the Ros repressor of the virC and virD operons: molecular intercommunication between plasmid and chromosomal genes. J Bacteriol 175:3486–3490
    [Google Scholar]
  18. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci USA 761648–1652
    [Google Scholar]
  19. Finan T. M., Kunkel B., De Vos G. F., Signer E. R. 1986; Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 165:66–72
    [Google Scholar]
  20. Friedman A. M., Long S. R., Brown S. E., Buikema W. J., Ausubel F. M. 1982; Construction of a broad host-range cosmid cloning vector and its use in genetic analysis of Rhigobium mutants. Gene 18:289–296
    [Google Scholar]
  21. Glazebrook J., Walker G. C. 1989; A novel exopolysaccharide can function in the place of the calcofluor-binding exopolysaccharide in nodulation of alfalfa by R hizobium meliloti . Cell 56:661–672
    [Google Scholar]
  22. Gray J. X., Djordjevic N. A., Rolfe B. G. 1990; Two genes that regulate exopolysaccharide production in Rhizobium sp. NGR234. J Bacteriol 172:193–203
    [Google Scholar]
  23. Heim R., Strehler E. E. 1991; Cloning an Escherichia coli gene encoding a protein remarkably similar to mammalian aldehyde dehydrogenases. Gene 99:15–23
    [Google Scholar]
  24. Jiang X.-M., Neal B., Santiago F., Lee S. J., Romana L. K., Reeves P. R. 1991; Structure and sequence of the rfb (O-antigen) gene cluster of Salmonella serovar typhimurium (strain LT2). Mol Microbiol 5:695–713
    [Google Scholar]
  25. Keller M., Roxlau A., Weng W. M., Schmidt M., Quandt J., Niehaus K., Jording D., Arnold W., Puhler A. 1995; Molecular analysis of the R hizobium meliloti mucR gene regulating the biosynthesis of the exopolysaccharides succinoglycan and galactoglucan. Mol Plant-Microbe Interact 8:267–277
    [Google Scholar]
  26. Kobayashi D. Y., Tamaki S. J., Keen N. T. 1993; Molecular characterisation of a virulence gene D in Pseudomonas syringaepathovar tomato. Mol Plant-Microbe Interact 3:94–102
    [Google Scholar]
  27. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132
    [Google Scholar]
  28. Latchford J. W., Borthakur D., Johnston A. W. B. 1991; The products of Rhizobium genes, psi and pss, which affect exopolysaccharide production, are associated with the bacterial cell surface. Mol Microbiol 5:2107–2114
    [Google Scholar]
  29. Leigh J. A., Coplin D. L. 1992; Exopolysaccharides in plant-bacterial interactions. Anna Rev Microbiol 46:307–346
    [Google Scholar]
  30. Leigh J. A., Walker G. C. 1994; Exopolysaccharides of Rhizobium: synthesis, regulation and symbiotic function. Trends Genet 10:63–67
    [Google Scholar]
  31. Long 5., McCune S., Walker G. C. 1988; Symbiotic loci of R hizobium meliloti identified by random Tn phoA mutagenesis. J Bacteriol 170:4257–4265
    [Google Scholar]
  32. Manoil C., Beckwith J. 1985; Tn phoA: a transposon probe for protein export signals. Proc Natl Acad Sci USA 828129–8137
    [Google Scholar]
  33. Messing J., Crea R., Seeburg P. H. 1983; A system for shotgun DNA sequencing. Nucleic Acids Res 9:309–314
    [Google Scholar]
  34. Pabo C. O., Sauer R. T. 1984; Protein-DNA recognition. Annu Rev Biochem 35:293–321
    [Google Scholar]
  35. Prinz W. A., Beckwith J. 1994; Gene fusion analysis of membrane protein topology: a direct comparison of alkaline phosphatase and β-lactamase fusions. J Bacteriol 176:6410–6413
    [Google Scholar]
  36. Reed J. W., Capage M., Walker G. C. 1991a; Rhizobium meliloti exoG and exoJ mutations affect the ExoX-ExoY system for modulation of exopolysaccharide production. J Bacteriol 173:3776–3788
    [Google Scholar]
  37. Reed J. W., Glazebrook J., Walker G. C. 1991b; The exoR gene of Rhizohium meliloti affects RNA levels of other exo genes but lacks homology to known transcriptional regulators. J Bacteriol 173:3789–3794
    [Google Scholar]
  38. Reuber T. L., Walker G. C. 1993; Biosynthesis of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti . Cell 74:269–280
    [Google Scholar]
  39. Reuber T. L., Long S., Walker G. C. 1991; Regulation of Rhiz0bium meliloti exo genes in free-living cells and in plants examined by using Tn phoA fusions. J Bacteriol 173:426–434
    [Google Scholar]
  40. Rossen L., Johnston A. W. B., Downie J. A. 1984; DNA sequence of the Rhizobium leguminosarum nodulation genes nod A, Band C required for root hair curling. Nucleic Acids Res 12:9497–9508
    [Google Scholar]
  41. Rubens C. E., Heggen I. M., Haft R. F., Wessels M. R. 1993; Identification of cpsD, a gene essential for type-III capsule expression in group-B Streptococci . Mol Microbiol 8:843–855
    [Google Scholar]
  42. Ruvkun G., Ausubel F. M. 1981; A general method for site- directed mutagenesis in prokaryotes. Nature 289:85–88
    [Google Scholar]
  43. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  44. Spaink H. P., Okker R. J. H., Wijffelman C. A., Pees E., Lugtenberg B. J. J. 1987; Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol Biol 9:27–39
    [Google Scholar]
  45. Sutherland I. W. 1985; Biosynthesis and composition of Gram-negative bacterial extracellular and wall polysaccharides. Annu Rev Microbiol 39:243–270
    [Google Scholar]
  46. Tiburtius A. 1995 Molecular genetics of genes involved in exopolysaccharide synthesis in Agrobacterium radiobacter. PhD thesis, University of East Anglia.
    [Google Scholar]
  47. Vanderslice R. W., Doherty D. H., Capage H. A., Betlach M. R., Hassler R. A., Henderson N. M., Ryan-Graniero J., Tech-lenburg M. 1989; Genetic engineering of polysaccharide in Xanthomonas campestris . pp. 145–156 In Recent Developments in Industrial Polysaccharides: Biomedical and Biotechnological Advances 5 Creszenzi I. C. M., Stivola S. S. Edited by New York:: Gordon & Breach Science.;
    [Google Scholar]
  48. Vieira J., Messing J. 1984; Production of single-stranded plasmid DNA. Methods Enzymol 153:3–11
    [Google Scholar]
  49. Wood W. B. 1966; Host specificity of DNA produced by Escherichia coli bacterial mutations affecting the restriction and modification of DNA. J Mol Biol 16:118–133
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-142-9-2621
Loading
/content/journal/micro/10.1099/00221287-142-9-2621
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error