1887

Abstract

Amino acid uptake by the general amino acid permease (Aap) of strain 3841 was severely reduced by the presence of aspartate in the growth medium when glucose was the carbon source. The reduction in transport by the Aap appeared to be caused by inhibition of uptake and not by transcriptional repression. However, as measured with fusions, the Ntr-regulated gene was repressed by aspartate. The negative regulatory effect on both the Aap and was prevented by mutation of any component of the dicarboxylate transport (Dct) system or by the inclusion of a C-dicarboxylate in the growth medium, including the non-metabolizable analogue 2-methylsuccinate. As measured by total uptake and with a fusion, aspartate was an efficient inducer of the Dct system, but slightly less so than succinate alone or succinate and aspartate together. Thus, aspartate does not cause overexpression of DctA leading to improper regulation of other operons. Transport measurements revealed that the Dct system has an apparent for succinate of 5 μM and an apparent for aspartate inhibition of succinate uptake of 5 mM. These data imply that the Dct-mediated accumulation of aspartate causes an unregulated build-up of aspartate or a metabolic product of it in the cell. This accumulation of aspartate is prevented either by mutation of the system or by the presence of a higher affinity substrate that will reduce access of aspartate to the carrier protein. Elevation or disruption of the intracellular aspartate pool is predicted to disrupt N-regulated operons and nitrogen fixation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-142-9-2603
1996-09-01
2021-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/9/mic-142-9-2603.html?itemId=/content/journal/micro/10.1099/00221287-142-9-2603&mimeType=html&fmt=ahah

References

  1. Amar M., Patriarca E. J., Manco G., Bernard P., Riccio A., Lamberti A., Defez R., laccarino M. 1994; Regulation of nitrogen metabolism is altered in a glnB mutant strain of R hizobium leguminosarum. Mol Microbiol 11:685–693
    [Google Scholar]
  2. Appels M. A., Haaker H. 1991; Glutamate oxaloacetate transaminase in pea root nodules - participation in a malate/ aspartate shuttle between plant and bacteroid. Plant Physiol 95:740–747
    [Google Scholar]
  3. Arwas R., McKay I. A., Rowney F. R. P., Dilworth M. J., Glenn A. R. 1985; Properties of organic acid utilization mutants of Rhizobium leguminosarum strain 300. J Gen Microbiol 131:2059–2066
    [Google Scholar]
  4. Beringer J. E. 1974; R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198
    [Google Scholar]
  5. Birkenhead K., Noonan B., Reville W. J., Boesten B., Manian S. S., Ogara F. 1990; Carbon utilization and regulation of nitrogen-fixation genes in Rhizobium meliloti. Mol Plant-Microbe Interact 3:167–173
    [Google Scholar]
  6. Brown C. M., Dilworth M. J. 1975; Ammonia assimilation by Rhizobium cultures and bacteroids. J Gen Microbiol 86:39–48
    [Google Scholar]
  7. Driscoll B. T., Finan T. M. 1993; NAD+-dependent malic enzyme of Rhizobium meliloti is required for symbiotic nitrogen fixation. Mol Microbiol 7:865–873
    [Google Scholar]
  8. Engelke T., Jording D., Kapp D., Pühler A. 1989; Identification and sequence analysis of the Rhiyobium meliloti detA gene encoding the C4-dicarboxylate carrier. J Bacteriol 171:5551–5560
    [Google Scholar]
  9. Figurski D. H., Helinski D. R. 1979; Replication of an origin- containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 761648–1652
    [Google Scholar]
  10. Finan T. M., Wood J. M., Jordan D. C. 1983; Symbiotic properties of C4-dicarboxylic acid transport mutants of Rhizobium leguminosarum. J Bacteriol 154:1403–1413
    [Google Scholar]
  11. Fitzmaurice A. M., O’Gara F. 1991; Glutamate catabolism in Rhizobium meliloti. Arch Microbiol 155:422–427
    [Google Scholar]
  12. Fitzmaurice A. M., O´Gara F. 1993; A Rhizobium meliloti mutant, lacking a functional gamma-aminobutyrate (GABA) bypass, is defective in glutamate catabolism and symbiotic nitrogen fixation. FEMS Microbiol Lett 109:195–202
    [Google Scholar]
  13. Glenn A. R., Dilworth M. J. 1981; Oxidation of substrates by isolated bacteroids and free-living cells of Rhizbium leguminosarum 3841. J Gen Microbiol 126:243–247
    [Google Scholar]
  14. Glenn A. R., Poole P. S., Hudrnan J. F. 1980; Succinate uptake by free-living and bacteroid forms of Rhizobium leguminosarum. J Gen Microbiol 119:267–271
    [Google Scholar]
  15. Glenn A. R., McKay I. A., Arwas R., Dilworth M. J. 1984; Sugar metabolism and the symbiotic properties of carbohydrate mutants of Rhizobium leguminosarum. J Gen Microbiol 130:239–245
    [Google Scholar]
  16. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  17. Haney S. A., Oxender D. L. 1992; Amino acid transport in bacteria. Int Rep Cytol 137A:37–95
    [Google Scholar]
  18. Haney S. A., Platko J. V., Oxender D.L. 1992; Lrp, a leucine-responsive protein, regulates branched-chain amino acid transport genes in Escherichia coli. J Bacteriol 174:108–115
    [Google Scholar]
  19. Huerta-Zepeda A., Durán S., Du Pont G., Calderón J. 1996; Asparagine degradation in Rhizobium etli. Microbiology 142:1071–1076
    [Google Scholar]
  20. Jiang J., Gu B., Albright L. M., Nixon B. T. 1989; Conservation between coding and regulatory elements of R hizobium meliloti and Rhizobium leguminosarum dct genes. J Bacteriol 171:5244–5253
    [Google Scholar]
  21. Johnston A. W. B., Beringer J. E. 1975; Identification of the Rhizobium strains in pea root nodules using genetic markers. J Gen Microbiol 87:343–350
    [Google Scholar]
  22. Jording D., Sharma P. K., Schmidt R., Engelke T., Uhde C., Pühler A. 1992; Regulatory aspects of the C4-dicarboxylate transport in Rhizobium meliloti transcripnonal activation and dependence on effective symbiosis. J Plant Physiol 141:18–27
    [Google Scholar]
  23. Ledebur H., Nixon B. T. 1992; Tandem DctD-binding sites of the R hizobium meliloti dctA upstream activating sequence are essential for optimal function despite a 50-fold to 100-fold difference in affinity for DctD. Mol Microbiol 6:3479–3492
    [Google Scholar]
  24. Ledebur H., Gu B., Sojda J. I., Nixon B. T. 1990; Rhizobium meliloti and R hizobium leguminosarum dctD gene products bind to tandem sites in an activation sequence located upstream of sigma54-dependent dctA promoters. j Bacteriol 172:3888–3897
    [Google Scholar]
  25. Mavridou A., Barny M.-A., Poole P., Plaskitt K., Davies A. E., Johnston A. W. B., Downie J. A. 1995; Rhizobium leguminosarum nodulation gene (nod) expression is lowered by an allele-specific mutation in the dicarboxylate transport gene dctB. Microbiology 141:103–111
    [Google Scholar]
  26. Morett E, Moreno S., Espin G. 1985; Impaired nitrogen fixation and glutamine synthesis in methionine sulfoximine sensitive (MSTs) mutants of Rhizobium phaseoli.. Mol Gen Genet 200:229–234
    [Google Scholar]
  27. Patriarca E. J., Chiurazzi M., Manco G., Riccio A., Lamberti A., Depaolis A., Rossi M., Defez R., laccarino M. 1992; Activation of the R hizobium leguminosarum glnII gene by NtrC is dependent on upstream DNA sequences. Mol Gen Genet 234:337–345
    [Google Scholar]
  28. Patriarca E. J., Riccio A., Tate R., Cofonna-Romano S., laccarino M., Defez R. 1993; The ntrBC genes of R hizobium leguminosarum are part of a complex operon subject to negative regulation. Mol Microbiol 9:569–577
    [Google Scholar]
  29. Poole P. S., Dilworth M. J., Glenn A. R. 1984; Acquisition of aspartase activity in Rhizobium leguminosarum WU235. J Gen Microbiol 130:881–886
    [Google Scholar]
  30. Poole P. S., Franklin M., Glenn A. R., Dilworth M. J. 1985; The transport of l-glutamate by R hizobium leguminosarum involves a common amino acid carrier. J Gen Microbiol 131:1441–1448
    [Google Scholar]
  31. Poole P. S., Dilworth M. J., Glenn A. R. 1987; Ammonia is the preferred nitrogen source in several rhizobia. J Gen Microbiol 133:1707–1712
    [Google Scholar]
  32. Poole P. S., Schofield N. A., Reid C. J., Drew E. M., Walshaw D. L. 1994; Identification of chromosomal genes located down-stream of dctD that affect the requirement for calcium and the lipopolysaccharide layer of Rhizobium leguminosarum. Microbiology 140:2797–2809
    [Google Scholar]
  33. Prentki P., Krisch H. M. 1984; In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313
    [Google Scholar]
  34. Quandt J., Hynes M. F. 1993; Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127:15–21
    [Google Scholar]
  35. Rastogi V. K., Watson R. J. 1991; Aspartate aminotransferase activity is required for aspartate catabolism and symbiotic nitrogen fixation in Rhizobium meliloti. J Bacteriol 173:2879–2887
    [Google Scholar]
  36. Ronson C. W. 1988; Genetic regulation of C4-dicarboxylate transport in rhizobia. In Nitrogen Fixation: Hundred Years After pp. 547–551 Edited by Bothe H., Bruijn F. J., Newton W. E. New York: Gustav Fischer;
    [Google Scholar]
  37. Ronson C. W., Astwood P. M. 1985; Genes involved in the carbon metabolism of bacteroids. In Nitrogen Fixation Research Progress pp. 201–207 Edited by Evans E. D., Bottomley P. J., Newton W. E. Dordrecht: Martinus Nijhoff;
    [Google Scholar]
  38. Ronson C. W., Lyttleton P., Robertson J. G. 1981; C4-dicarboxylate transport mutants of Rhiyobium trifolii torm ineffective nodules on Trifoiium repens. Proc Natl Acad Sci USA 784284–4288
    [Google Scholar]
  39. Ronson C. W., Astwood P. M., Downie J. A. 1984; Molecular cloning and genetic organization of C4-dicarboxylate transport genes from Rhizobium leguminosarum. J Bacteriol 160:903–909
    [Google Scholar]
  40. Ronson C. W., Astwood P. M., Nixon B. T., Ausubel F. M. 1987; Deduced products of C4-dicarboxylate transport regulatory genes of Rhizobium legziminomarum are homologous to nitrogen regulatory gene products. Nacieic Acids Res 15:7921–7334
    [Google Scholar]
  41. Rosendahl L, Dilworth M. J., Glenn A. R. 1992; Exchange of metabolites across the peribacteroid membrane in pea root nodules. J Plant Physiol 139:635–638
    [Google Scholar]
  42. Salminen S. O., Streeter J. G. 1987; Involvement of glutamate in the respiratory metabolism of Bradyrhizobium japonicum bacteroids. J Bacteriol 169:495–499
    [Google Scholar]
  43. Salminen S. O., Streeter J. G. 1990; Factors contributing to the accumulation of glutamate in Bradyrhizobium japonicum bacteroids under microaerobic conditions. J Gen Microbiol 136:2119–2126
    [Google Scholar]
  44. Salminen S. O., Streeter J. G. 1992; Labeling of carbon pools in Bradyrbizobium japonicum and Rhizobium leguminosarum bv. viciae bacteroids following incubation of intact nodules with 14CO2. Plant Physiol 100:597–604
    [Google Scholar]
  45. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  46. Simon R., Priefer U., Pühler A. 1983; A broad host-range mobilization system for in vivo genetic engineering: transposon mutagenesis of Gram-negative bacteria. Biotechnology 1:784–791
    [Google Scholar]
  47. Spaink H. P., Okker R. J. H., Wijffelman C. A., Pees E., Lugtenberg B. J. J. 1987; Promoters in the nodulation region of the Rhizobium leguminosarum SYM plasmid PRL1JI. Plant Mol Biol 9:27–39
    [Google Scholar]
  48. Walshaw D. L., Poole P. S. 1996; The general l-amino acid permease of Rhizobium leguminosarum is an ABC uptake system that influences efflux of solutes Mol Microbiol. (in press)
    [Google Scholar]
  49. Wang Y., Birkenhead K., Boesten B., Manian S., O’Gara F. 1989; Genetic analysis and regulation of the Rhizobium meliloti genes controlling C4-dicarboxylic acid transport. Gene 85:135–144
    [Google Scholar]
  50. Watson R. J. 1990; Analysis of the C4-dicarboxylate transport genes of Rhizobium meliioti : nucleotide sequence and deduced products of dctA, dctB and dctD.. Mol Plant-Microbe Interact 3:174–181
    [Google Scholar]
  51. Watson R. J., Rastogi V. K. 1993; Cloning and nucleotide sequencing of Rhizobium meliloti aminotransferase genes: an as-partate aminotransferase required for symbiotic nitrogen fixation is atypical. J Bacteriol 175:1919–1928
    [Google Scholar]
  52. Watson R. J., Rastogi V. K., Chan Y.-K. 1993; Aspartate transport in Rhizobium meliloti.. J Gen Microbiol 139:1315–1323
    [Google Scholar]
  53. Wood W. B. 1966; Host specificity of DNA produced by Escherichia coli; bacterial mutations affecting the restriction and modification of DNA. J Mol Biol 16:118–133
    [Google Scholar]
  54. Yarosh O. K., Charles T.C. 1989; Analysis of C4- dicarboxylate transport genes in Rhizobium meliloti. Mol Microbiol 3:813–823
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-142-9-2603
Loading
/content/journal/micro/10.1099/00221287-142-9-2603
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error