1887

Abstract

The high-affinity galactose permease, which comprises the periplasmic galactose receptor MgIB, the membrane translocator MgIC and the membrane-associated ATPase MgIA, displayed a reduced activity in a temperature-sensitive mutant of . This reduced transport activity correlated with a reduction in the quantity of MgIB. At 42 °C, an accumulation of pre-MgIB in the temperature-sensitive mutant reflected a defect in MgIB export. In addition, an accumulation of pre-MgIB in and mutants suggested that SecB and the Sec translocase are also involved in export of the periplasmic galactose receptor. At 30 °C, there was no accumulation of pre-MgIB in the mutant, but there was still a decreased amount of MgIB in the periplasm. The reduction in MgIB expression was not the result of a decrease in its stability, nor was it the result of a general defect in translation or transcription, since the MgIA protein (which is expressed from the same operon as MgIB) was synthesized in normal amounts. Two mRNAs are implicated in the expression of the genes, a polycistronic mRNA, and a more stable and more abundant mRNA, produced by 3′-5′ degradation of the mRNA (R. W. Hogg, C. Voelker & I. von Carlowitz, 1991, 229, 453–459). The mRNA is protected against exonucleases by a REP (Repetitive Extragenic Palindrome) sequence located at its 3′ extremity, which is responsible for the higher expression of MgIB compared to MgIA and MgIC. The decreased MgIB expression in the mutant at 30 °C in the present work correlated with a reduced stability of the mRNA, which may have resulted from a defective stabilization by the REP sequence, or from a defect in translation of the gene.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-142-9-2595
1996-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/9/mic-142-9-2595.html?itemId=/content/journal/micro/10.1099/00221287-142-9-2595&mimeType=html&fmt=ahah

References

  1. Bardwell J. C., Craig E. A. 1984; Major heat shock gene of Drosophila and Escherichia coli heat inducible dnaK gene are homologous. Proc Natl Acad Set 81:848–852
    [Google Scholar]
  2. Brown S. 1991; 4.5S RNA: does form predict function?. New Biol 3:430–438
    [Google Scholar]
  3. Bukau B., Walker G. C. 1989; Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism. J Bacteriol 171:2337–2346
    [Google Scholar]
  4. Bukau B., Reilly P., McCarty J., Walker G. C. 1993; Immunogold localization of the DnaK heat shock protein in Escherichia coli cells. J Gen Microbiol 139:95–99
    [Google Scholar]
  5. Carpoussis A. J., Van Houwe G., Ehretsman C., Krisch H. M. 1994; Copurification of E. coli RNAase E and PNPase: evidence for a specific association between two enzymes important in RNA processing and degradation. Cell 76:889–900
    [Google Scholar]
  6. Causton H., Py B., McLaren R. S., Higgins C. F. 1994; mRNA degradation in Escherichia coli: a novel factor which impedes the exoribonucleolytic action of PNPase at stem-loop structures. Mol Microbiol 14:731–741
    [Google Scholar]
  7. Economou A. Z., Wickner W. 1994; SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78:835–843
    [Google Scholar]
  8. El Yaagoubi A., Kohiyama M., Richarme G. 1994; Localization of DnaK (chaperone 70) from Escherichia coli in an osmotic-shock-sensitive compartment of the cytoplasm. J Bacteriol 176:7074–7078
    [Google Scholar]
  9. Ellis R. J., van der Vies S. M. 1991; Molecular chaperones. Amu Rev Biochem 60:321–347
    [Google Scholar]
  10. Gaitanaris G. A., Vysokanov A., Hung S. G., Gragerov A. 1994; Successive action of Escherichia coli chaperones in vivo . Mol Microbiol 14:861–869
    [Google Scholar]
  11. Georgellis D., Sohlberg B., Hartl F. U., Von Gabain A. 1995; Identification of GroEL as a constituent of an mRNA-protection complex in Escherichia coli . Mol Microbiol 16:1259–1268
    [Google Scholar]
  12. Georgopoulos C. 1977; A new bacterial gene which affects lambda DNA replication. Mol Gen Genet 151:35–39
    [Google Scholar]
  13. Georgopoulos C., Liberek K., Zylicz M., Ang D. 1994; Properties of the heat shock proteins of E. coli and the auto-regulation of the heat shock response. In The Biology of the Heat Shock Proteins and Molecular Chaperones pp. 209–250 veridge R. I., Tissieres A., Georgopoulos C. Edited by Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  14. Gross C. A., Strauss D. B., Erickson J. W., Yura T. 1990; The function and regulation of heat shock proteins in Escherichia coli . In Stress Proteins in Biology and Medicine pp. 166–190 Morimoto R., Tissieres A., Georgopoulos C. Edited by Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  15. Hall M. N., Gabay J., Schwartz M. 1983; Evidence for a coupling of synthesis and export of an outer membrane protein in Escherichia coli . EMBO J 2:15–19
    [Google Scholar]
  16. Harayama S., Bollinger J., Lino T., Hazelbauer G. 1983; Characterization of the mgl operon of Escherichia coli by transposon mutagenesis and molecular cloning. J Bacteriol 153:408–415
    [Google Scholar]
  17. Hendrick J. P., Hartl F. U. 1993; Molecular chaperone functions of heat shock proteins. Anna Rev Biochem 62:349–384
    [Google Scholar]
  18. Hendrick J. P., Langer T., Davis Y. A., Hartl F. U., Wiedmann M. 1993; Control of folding and membrane translocation by binding of the chaperone DnaJ to nascent polypeptides. Proc Natl Acad Sci 90:10216–10220
    [Google Scholar]
  19. Henry M. D., Yancey S. D., Kushner S. R. 1992; Role of the heat shock response in stability of mRNA in Escherichia coli K-12. J Bacteriol 174:743–748
    [Google Scholar]
  20. Hogg R. W., Voelker C., von Carlowitz I. 1991; Nucleotide sequence and analysis of the mgl operon of Escherichia coli K12. Mol Gen Genet 229:453–459
    [Google Scholar]
  21. lost I., Dreyfus M. 1995; The stability of Escherichia coli lacZ mRNA depends upon the simultaneity of its synthesis and translation. EMBO J 14:3252–3261
    [Google Scholar]
  22. Ito K., Bassford P. J., Beckwith J. 1981; Protein localization in E. coli: is there a common step in the secretion of periplasmic and outer-membrane proteins?. Cell 24:707–717
    [Google Scholar]
  23. Ito K., Wittekind M., Nomura M., Shiba K., Yura T., Miura A., Nashimoto H. 1983; A temperature-sensitive mutant of E. coli exhibiting slow processing of exported proteins. Cell 32:789–797
    [Google Scholar]
  24. Kumamoto C. A., Beckwith J. 1983; Mutations in a new gene secB cause defective protein localization in Escherichia coli . J Bacteriol 154:253–260
    [Google Scholar]
  25. Kusukawa N., Yura T., Ueguchi C., Akiyama Y., Ito K. 1989; Effects of mutations in heat shock genes groES and groEL on protein export in Escherichia coli . EMBO J 8:3517–3521
    [Google Scholar]
  26. Luirink J., Dobberstein B. 1994; Mammalian and Escherichia coli signal recognition particles. Mol Microbiol 11:9–13
    [Google Scholar]
  27. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual. Cold Spring Harbour, NY: Cold Spring Harbour Laboratory;
    [Google Scholar]
  28. Manson M. D., Boos W., Bassford P. J., Rasmussen B. A. 1985; Dependence of maltose transport and chemotaxis on the amount of maltose binding protein. J Biol Chem 260:9727–9733
    [Google Scholar]
  29. Meury J., Kohiyama M. 1991; Role of the heat shock protein DnaK in osmotic adaptation of Escherichia coli . J Bacteriol 173:4404–4410
    [Google Scholar]
  30. Miller J. H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Nagai H., Yuzawa H., Kanemori M., Yura T. 1994; A distinct element of the cr σS2 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli . Proc Natl Acad Sci 91:10280–10284
    [Google Scholar]
  32. Nelson R. J., Ziegelhoffer T., Nicolet C., Wemer-Washburne M., Craigh E. A. 1992; The translation machinery and 70 kd heat shock protein cooperate in protein synthesis. Cell 71:97–105
    [Google Scholar]
  33. Newbury S., Smith N. H., Robinson E. C., Hiles I. D., Higgins C. F. 1987a; Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell 48:297–310
    [Google Scholar]
  34. Newbury S., Smith N. H., Higgins C. F. 1987b; Differential mRNA stability controls relative gene expression within a poly- cistronic operon. Cell 51:1131–1143
    [Google Scholar]
  35. Nossal N. G., Heppel L. A. 1966; The release of enzymes by osmotic shock from Escherichia coli in exponential phase. J Biol Chem 241:3055–3062
    [Google Scholar]
  36. Oliver D. B., Beckwith J. 1981; E. coli mutant pleiotropically defective in the export of secreted proteins. Cell 30:765–772
    [Google Scholar]
  37. Paek K. H., Walker G. C. 1987; Escherichia coli null mutants are inviable at high temperature. J Bacteriol 169:283–290
    [Google Scholar]
  38. Petersen C. 1993; Translation and mRNA stability in bacteria: a complex relationship. In Control of Messenger KNA Stability pp. 117–160 Balasco J., Brawerman G. Edited by San Diego: Academic Press;
    [Google Scholar]
  39. Phillips G. J., Silhavy T. J. 1992; The E. coli ffh gene is necessary for viability and efficient protein export. Nature 359:744–746
    [Google Scholar]
  40. Powers E. L., Randall L. L. 1995; Export of the galactosebinding protein in Escherichia coli depends on the chaperone SecB. J Bacteriol 177:1906–1907
    [Google Scholar]
  41. Puziss J. W., Fikes J. D., Bassford P.J. 1989; Analysis of mutational alterations in the hydrophilic segment of the maltose binding protein signal peptide. J Bacteriol 171:2303–2311
    [Google Scholar]
  42. Puziss J. W., Harvey R. J., Bassford P. J. 1992; Alterations in the hydrophilic segment of the maltose binding protein signal peptide that affects either export or translation of MBP. J Bacteriol 174:6488–6497
    [Google Scholar]
  43. Py B., Cauton H., Mudd E. A., Higgins C. F. 1994; A protein complex mediating mRNA degradation in Escherichia coli . Mol Microbiol 14:717–729
    [Google Scholar]
  44. Richarme G. 1983; Associative properties of the Escherichia coli galactose binding protein and maltose binding protein. Biochim Biophys Acta 748:99–108
    [Google Scholar]
  45. Richarme G., El Yaagoubi A., Kohiyama M. 1993; The MglA component of the binding protein-dependent galactose transport system of Salmonella typhimurium is a galactose-stimulated ATPase. J Biol Chem 32:24074–24077
    [Google Scholar]
  46. Schneider E., Blundell M., Kennell D. 1978; Translation and mRNA decay. Mol Gen Genet 160:121–129
    [Google Scholar]
  47. Shi W., Zhou Y., Wild J., Adler J., Gross C. A. 1992; DnaK, DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli . J Bacteriol 174:6256–6263
    [Google Scholar]
  48. Stern M. J., Prossnitz E., Ferro-Luzzi Ames G. 1988; Role of the intercistronic region in post-transcriptional control of gene expression in the histidine transport operon of Salmonella typhimurium: involvement of REP sequences. Mol Microbiol 2:141–152
    [Google Scholar]
  49. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of protein from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci 76:4350–4354
    [Google Scholar]
  50. Wagner L. A., Gesteland R. F., Dayhuff T. J., Weiss R. B. 1994; An efficient Shine-Dalgarno sequence but not translation is necessary for lacZ mRNA stability in Escherichia coli . J Bacteriol 176:1683–1688
    [Google Scholar]
  51. Wild J., Altman E., Yura T., Gross C. A. 1992; DnaK and DnaJ heat shock proteins participate in protein export in Escherichia coli . Genes Dev 6:1165–1172
    [Google Scholar]
  52. Wu B., Georgopoulos C., Ang D. 1992; The essential E. colt msgB gene, a multicopy suppressor of a temperature-sensitive allele of the heat shock gene grpE, is identical to dapE . J Bacteriol 174:5258–5264
    [Google Scholar]
  53. Yarehuk O., Jacques N., Guillerez J., Dreyfus M. 1992; Interdependence of translation, transcription and mRNA degradation in the lacZ gene. J Mol Biol 226:581–596
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-142-9-2595
Loading
/content/journal/micro/10.1099/00221287-142-9-2595
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error